6,219 research outputs found

    Comment on "Clock Shift in High Field Magnetic Resonance of Atomic Hydrogen"

    Full text link
    In this Comment, we reanalyze the experiments on the collision frequency shift of the b-c and a-d hyperfine transitions in three-dimensional atomic hydrogen in the presence of, respectively, a and b-state atoms. Accurate consideration of the symmetry of the spatial and spin part of the diatomic wavefunction yields the difference a_T-a_S=0.30(5) \AA between the triplet and singlet s-wave scattering lengths of hydrogen atoms. This corrects the factor-of two error of the commented work [Phys. Rev. Lett. 101, 263003 (2008)].Comment: 1 pag

    Hyperfine frequency shift in two-dimensional atomic hydrogen

    Full text link
    We propose the explanation of a surprisingly small hyperfine frequency shift in the two-dimensional (2D) atomic hydrogen bound to the surface of superfluid helium below 0.1 K. Owing to the symmetry considerations, the microwave-induced triplet-singlet transitions of atomic pairs in the fully spin-polarized sample are forbidden. The apparent nonzero shift is associated with the density-dependent wall shift of the hyperfine constant and the pressure shift due to the presence of H atoms in the hyperfine state aa not involved in the observed b→cb\to c transition. The interaction of adsorbed atoms with one another effectively decreases the binding energy and, consequently, the wall shift by the amount proportional to their density. The pressure shift of the b→cb\to c resonance comes from the fact that the impurity aa-state atoms interact differently with the initial bb-state and final cc-state atoms and is also linear in density. The net effect of the two contributions, both specific for 2D hydrogen, is comparable with the experimental observation. To our knowledge, this is the first mentioning of the density-dependent wall shift. We also show that the difference between the triplet and singlet scattering lengths of H atoms, at−as=30(5)a_t-a_s=30(5) pm, is exactly twice smaller than the value reported by Ahokas {\it et al.}, Phys. Rev. Lett. {\bf101}, 263003 (2008).Comment: 4 pages, no figure

    Impurity relaxation mechanism for dynamic magnetization reversal in a single domain grain

    Full text link
    The interaction of coherent magnetization rotation with a system of two-level impurities is studied. Two different, but not contradictory mechanisms, the `slow-relaxing ion' and the `fast-relaxing ion' are utilized to derive a system of integro-differential equations for the magnetization. In the case that the impurity relaxation rate is much greater than the magnetization precession frequency, these equations can be written in the form of the Landau-Lifshitz equation with damping. Thus the damping parameter can be directly calculated from these microscopic impurity relaxation processes

    Adsorption and two-body recombination of atomic hydrogen on 3^3He-4^4He mixture films

    Full text link
    We present the first systematic measurement of the binding energy EaE_a of hydrogen atoms to the surface of saturated 3^3He-4^4He mixture films. EaE_a is found to decrease almost linearly from 1.14(1) K down to 0.39(1) K, when the population of the ground surface state of 3^3He grows from zero to 6×10146\times10^{14} cm−2^{-2}, yielding the value 1.2(1)×10−151.2(1)\times 10^{-15} K cm2^2 for the mean-field parameter of H-3^3He interaction in 2D. The experiments were carried out with overall 3^3He concentrations ranging from 0.1 ppm to 5 % as well as with commercial and isotopically purified 4^4He at temperatures 70...400 mK. Measuring by ESR the rate constants KaaK_{aa} and KabK_{ab} for second-order recombination of hydrogen atoms in hyperfine states aa and bb we find the ratio Kab/KaaK_{ab}/K_{aa} to be independent of the 3^3He content and to grow with temperature.Comment: 4 pages, 4 figures, all zipped in a sigle file. Submitted to Phys. Rev. Let

    Overtones of Isoscalar Giant Resonances in medium-heavy and heavy nuclei

    Full text link
    A semi-microscopic approach based on both the continum-random-phase-approximation (CRPA) method and a phenomenological treatment of the spreading effect is extended and applied to describe the main properties (particle-hole strength distribution, energy-dependent transition density, partial direct-nucleon-decay branching ratios) of the isoscalar giant dipole, second monopole, and second quadrupole resonances. Abilities of the approach are checked by description of gross properties of the main-tone resonances. Calculation results obtained for the resonances in a few singly- and doubly-closed-shell nuclei are compared with available experimental data.Comment: 12 pages, 14 figures, submitted to Phys. Rev.

    Low-Temperature Mobility of Surface Electrons and Ripplon-Phonon Interaction in Liquid Helium

    Full text link
    The low-temperature dc mobility of the two-dimensional electron system localized above the surface of superfluid helium is determined by the slowest stage of the longitudinal momentum transfer to the bulk liquid, namely, by the interaction of surface and volume excitations of liquid helium, which rapidly decreases with temperature. Thus, the temperature dependence of the low-frequency mobility is \mu_{dc} = 8.4x10^{-11}n_e T^{-20/3} cm^4 K^{20/3}/(V s), where n_e is the surface electron density. The relation T^{20/3}E_\perp^{-3} << 2x10^{-7} between the pressing electric field (in kV/cm) and temperature (in K) and the value \omega < 10^8 T^5 K^{-5}s^{-1} of the driving-field frequency have been obtained, at which the above effect can be observed. In particular, E_\perp = 1 kV/cm corresponds to T < 70 mK and \omega/2\pi < 30 Hz.Comment: 4 pages, 1 figur
    • …
    corecore