6,731 research outputs found
Comment on "Clock Shift in High Field Magnetic Resonance of Atomic Hydrogen"
In this Comment, we reanalyze the experiments on the collision frequency
shift of the b-c and a-d hyperfine transitions in three-dimensional atomic
hydrogen in the presence of, respectively, a and b-state atoms. Accurate
consideration of the symmetry of the spatial and spin part of the diatomic
wavefunction yields the difference a_T-a_S=0.30(5) \AA between the triplet and
singlet s-wave scattering lengths of hydrogen atoms. This corrects the
factor-of two error of the commented work [Phys. Rev. Lett. 101, 263003
(2008)].Comment: 1 pag
Hyperfine frequency shift in two-dimensional atomic hydrogen
We propose the explanation of a surprisingly small hyperfine frequency shift
in the two-dimensional (2D) atomic hydrogen bound to the surface of superfluid
helium below 0.1 K. Owing to the symmetry considerations, the microwave-induced
triplet-singlet transitions of atomic pairs in the fully spin-polarized sample
are forbidden. The apparent nonzero shift is associated with the
density-dependent wall shift of the hyperfine constant and the pressure shift
due to the presence of H atoms in the hyperfine state not involved in the
observed transition. The interaction of adsorbed atoms with one
another effectively decreases the binding energy and, consequently, the wall
shift by the amount proportional to their density. The pressure shift of the
resonance comes from the fact that the impurity -state atoms
interact differently with the initial -state and final -state atoms and
is also linear in density. The net effect of the two contributions, both
specific for 2D hydrogen, is comparable with the experimental observation. To
our knowledge, this is the first mentioning of the density-dependent wall
shift. We also show that the difference between the triplet and singlet
scattering lengths of H atoms, pm, is exactly twice smaller
than the value reported by Ahokas {\it et al.}, Phys. Rev. Lett. {\bf101},
263003 (2008).Comment: 4 pages, no figure
Impurity relaxation mechanism for dynamic magnetization reversal in a single domain grain
The interaction of coherent magnetization rotation with a system of two-level
impurities is studied. Two different, but not contradictory mechanisms, the
`slow-relaxing ion' and the `fast-relaxing ion' are utilized to derive a system
of integro-differential equations for the magnetization. In the case that the
impurity relaxation rate is much greater than the magnetization precession
frequency, these equations can be written in the form of the Landau-Lifshitz
equation with damping. Thus the damping parameter can be directly calculated
from these microscopic impurity relaxation processes
Adsorption and two-body recombination of atomic hydrogen on He-He mixture films
We present the first systematic measurement of the binding energy of
hydrogen atoms to the surface of saturated He-He mixture films.
is found to decrease almost linearly from 1.14(1) K down to 0.39(1) K, when the
population of the ground surface state of He grows from zero to
cm, yielding the value K cm
for the mean-field parameter of H-He interaction in 2D. The experiments
were carried out with overall He concentrations ranging from 0.1 ppm to 5 %
as well as with commercial and isotopically purified He at temperatures
70...400 mK. Measuring by ESR the rate constants and for
second-order recombination of hydrogen atoms in hyperfine states and we
find the ratio to be independent of the He content and to
grow with temperature.Comment: 4 pages, 4 figures, all zipped in a sigle file. Submitted to Phys.
Rev. Let
Overtones of Isoscalar Giant Resonances in medium-heavy and heavy nuclei
A semi-microscopic approach based on both the
continum-random-phase-approximation (CRPA) method and a phenomenological
treatment of the spreading effect is extended and applied to describe the main
properties (particle-hole strength distribution, energy-dependent transition
density, partial direct-nucleon-decay branching ratios) of the isoscalar giant
dipole, second monopole, and second quadrupole resonances. Abilities of the
approach are checked by description of gross properties of the main-tone
resonances. Calculation results obtained for the resonances in a few singly-
and doubly-closed-shell nuclei are compared with available experimental data.Comment: 12 pages, 14 figures, submitted to Phys. Rev.
Low-Temperature Mobility of Surface Electrons and Ripplon-Phonon Interaction in Liquid Helium
The low-temperature dc mobility of the two-dimensional electron system
localized above the surface of superfluid helium is determined by the slowest
stage of the longitudinal momentum transfer to the bulk liquid, namely, by the
interaction of surface and volume excitations of liquid helium, which rapidly
decreases with temperature. Thus, the temperature dependence of the
low-frequency mobility is \mu_{dc} = 8.4x10^{-11}n_e T^{-20/3} cm^4 K^{20/3}/(V
s), where n_e is the surface electron density. The relation
T^{20/3}E_\perp^{-3} << 2x10^{-7} between the pressing electric field (in
kV/cm) and temperature (in K) and the value \omega < 10^8 T^5 K^{-5}s^{-1} of
the driving-field frequency have been obtained, at which the above effect can
be observed. In particular, E_\perp = 1 kV/cm corresponds to T < 70 mK and
\omega/2\pi < 30 Hz.Comment: 4 pages, 1 figur
- …