1,757 research outputs found

    Superconductivity from repulsive interactions in the two dimensional electron gas

    Full text link
    We present a well-controlled perturbative renormalization group (RG) treatment of superconductivity from short-ranged repulsive interactions in a variety of model two dimensional electronic systems. Our analysis applies in the limit where the repulsive interactions between the electrons are small compared to their kinetic energy.Comment: 10 pages 3 figure

    Adaptive Consensus: A network pruning approach for decentralized optimization

    Full text link
    We consider network-based decentralized optimization problems, where each node in the network possesses a local function and the objective is to collectively attain a consensus solution that minimizes the sum of all the local functions. A major challenge in decentralized optimization is the reliance on communication which remains a considerable bottleneck in many applications. To address this challenge, we propose an adaptive randomized communication-efficient algorithmic framework that reduces the volume of communication by periodically tracking the disagreement error and judiciously selecting the most influential and effective edges at each node for communication. Within this framework, we present two algorithms: Adaptive Consensus (AC) to solve the consensus problem and Adaptive Consensus based Gradient Tracking (AC-GT) to solve smooth strongly convex decentralized optimization problems. We establish strong theoretical convergence guarantees for the proposed algorithms and quantify their performance in terms of various algorithmic parameters under standard assumptions. Finally, numerical experiments showcase the effectiveness of the framework in significantly reducing the information exchange required to achieve a consensus solution.Comment: 35 pages, 3 figure

    The 6 minute walk in idiopathic pulmonary fibrosis: longitudinal changes and minimum important difference

    Get PDF
    The response characteristics of the 6 minute walk test (6MWT) in studies of idiopathic pulmonary fibrosis (IPF) are only poorly understood, and the change in walk distance that constitutes the minimum important difference (MID) over time is unknown

    ATP Reception and Chemosensory Adaptation in \u3c/i\u3eTetrahymena thermophila\u3c/i\u3e

    Get PDF
    Micromolar concentrations of adenosine triphosphate (ATP) and its non-hydrolyzable analog β- γ -methylene ATP are both effective depolarizing chemorepellents in Tetrahymena thermophila. Chemorepellent behavior consists of repeated bouts of backward swimming (avoidance reactions) that can easily be quantified to provide a convenient bioassay for purinergic reception studies. Chemosensory adaptation occurs following prolonged exposure (10 min) to the repellents, and cells regain normal swimming behavior. Adaptation is specific since cells that are behaviorally adapted to either ATP or β- γ -methylene ATP still retain full responsiveness to the chemorepellents GTP and lysozyme. However, cross adaptation occurs between ATP and β- γ -methylene ATP, suggesting that they involve the same receptor. Behavioral sensitivity to both ATP and β- γ -methylene ATP is increased by the addition of Na+, but addition of either Ca2+ or Mg2+ dramatically decreases the response to ATP. These ionic effects are correlated with in vivo ATP hydrolysis, suggesting that divalent ions decrease purinergic sensitivity by activating a Ca2+- or Mg2+-dependent ecto-ATPase to hydrolyze the ATP signal. In vivo [32P]ATP binding studies and Scatchard analysis suggest that the behavioral adaptation is due to a decrease in the number of surface binding sites, as represented by decreased Bmax values. All these changes are reversible (de-adaptation) after 12 min in a repellent-free buffer. Electrophysiological analysis showed that both β- γ -methylene ATP (10 micromol l-1) and ATP (500 micromol l-1) elicited sustained, reversible depolarizations while GTP (10 micromol l-1) produced a transient depolarization, suggesting that the chemosensory response pathways for ATP and GTP reception may differ. There may be separate ATP and GTP receptors since ATP and GTP responses do not cross-adapt and ‘cold’ (unlabeled) GTP is not a good inhibitor of [32P]ATP binding. These results suggests that T. thermophila possess high-affinity surface receptors for ATP that are down-regulated during chemosensory adaptation. These ATP receptors may act as chemorepellent receptors to enable T. thermophila to recognize recently lysed cells and avoid a possibly deleterious situation. This is the simplest eukaryotic organism to show an electrophysiological response to external ATP

    Theory of Andreev reflection in a two-orbital model of iron-pnictide superconductors

    Full text link
    A recently developed theory for the problem of Andreev reflection between a normal metal (N) and a multiband superconductor (MBS) assumes that the incident wave from the normal metal is coherently transmitted through several bands inside the superconductor. Such splitting of the probability amplitude into several channels is the analogue of a quantum waveguide. Thus, the appropriate matching conditions for the wave function at the N/MBS interface are derived from an extension of quantum waveguide theory. Interference effects between the transmitted waves inside the superconductor manifest themselves in the conductance. We provide results for a FeAs superconductor, in the framework of a recently proposed effective two-band model and two recently proposed gap symmetries: in the sign-reversed s-wave (Δcos(kx)cos(ky)\Delta\cos(k_x)\cos(k_y)) scenario resonant transmission through surface Andreev bound states (ABS) at nonzero energy is found as well as destructive interference effects that produce zeros in the conductance; in the extended s-wave (Δ[cos(kx)+cos(ky)]\Delta[\cos(k_x)+\cos(k_y)]) scenario no ABS at finite energy are found.Comment: 4 pages, 5 figure
    corecore