11,088 research outputs found
Atomic entanglement sudden death in a strongly driven cavity QED system
We study the entanglement dynamics of strongly driven atoms off-resonantly
coupled with cavity fields. We consider conditions characterized not only by
the atom-field coupling but also by the atom-field detuning. By studying two
different models within the framework of cavity QED, we show that the so-called
atomic entanglement sudden death (ESD) always occurs if the atom-field coupling
lager than the atom-field detuning, and is independent of the type of initial
atomic state
Thirty-fold: Extreme gravitational lensing of a quiescent galaxy at
We report the discovery of eMACSJ1341-QG-1, a quiescent galaxy at
located behind the massive galaxy cluster eMACSJ1341.92442 (). The
system was identified as a gravitationally lensed triple image in Hubble Space
Telescope images obtained as part of a snapshot survey of the most X-ray
luminous galaxy clusters at and spectroscopically confirmed in
ground-based follow-up observations with the ESO/X-Shooter spectrograph. From
the constraints provided by the triple image, we derive a first, crude model of
the mass distribution of the cluster lens, which predicts a gravitational
amplification of a factor of 30 for the primary image and a factor of
6 for the remaining two images of the source, making eMACSJ1341-QG-1 by
far the most strongly amplified quiescent galaxy discovered to date. Our
discovery underlines the power of SNAPshot observations of massive, X-ray
selected galaxy clusters for lensing-assisted studies of faint background
populations
Fiber-top atomic force microscope
We present the implementation of an atomic force microscope (AFM) based on fiber-top design. Our results demonstrate that the performances of fiber-top AFMs in contact mode are comparable to those of similar commercially available instruments. Our device thus represents an interesting\ud
alternative to existing AFMs, particularly for applications outside specialized research laboratories, where a compact, user-friendly, and versatile tool might often be preferred
The Quantum Geometric Phase between Orthogonal States
We show that the geometric phase between any two states, including orthogonal
states, can be computed and measured using the notion of projective
measurement, and we show that a topological number can be extracted in the
geometric phase change in an infinitesimal loop near an orthogonal state. Also,
the Pancharatnam phase change during the passage through an orthogonal state is
shown to be either or zero (mod ). All the off-diagonal geometric
phases can be obtained from the projective geometric phase calculated with our
generalized connection
Development of a high-sensitivity torsion balance to investigate the thermal Casimir force
We report development of a high-sensitivity torsion balance to measure the
thermal Casimir force. Special emphasis is placed on experimental
investigations of a possible surface electric force originating from surface
patch potentials that have been recently noticed by several experimental
groups. By gaining a proper understanding of the actual contribution of the
surface electric force in real materials, we aim to undertake precision force
measurements to resolve the Casimir force at finite temperature in real metals,
as well as in other semiconducting materials, such as graphene.Comment: Proceedings of the 10th International Conference "Quantum Field
Theory Under the Influence of External Conditions"; 11 pages and 4 figure
High-Q nested resonator in an actively stabilized optomechanical cavity
Experiments involving micro- and nanomechanical resonators need to be
carefully designed to reduce mechanical environmental noise. A small scale
on-chip approach is to add an additional resonator to the system as a
mechanical low-pass filter. Unfortunately, the inherent low frequency of the
low-pass filter causes the system to be easily excited mechanically. Fixating
the additional resonator ensures that the resonator itself can not be excited
by the environment. This, however, negates the purpose of the low-pass filter.
We solve this apparent paradox by applying active feedback to the resonator,
thereby minimizing the motion with respect the front mirror of an
optomechanical cavity. Not only does this method actively stabilize the cavity
length, but it also retains the on-chip vibration isolation.Comment: Minor adjustments mad
The packing of granular polymer chains
Rigid particles pack into structures, such as sand dunes on the beach, whose
overall stability is determined by the average number of contacts between
particles. However, when packing spatially extended objects with flexible
shapes, additional concepts must be invoked to understand the stability of the
resulting structure. Here we study the disordered packing of chains constructed
out of flexibly-connected hard spheres. Using X-ray tomography, we find long
chains pack into a low-density structure whose mechanical rigidity is mainly
provided by the backbone. On compaction, randomly-oriented, semi-rigid loops
form along the chain, and the packing of chains can be understood as the
jamming of these elements. Finally we uncover close similarities between the
packing of chains and the glass transition in polymers.Comment: 11 pages, 4 figure
Fidelity susceptibility, scaling, and universality in quantum critical phenomena
We study fidelity susceptibility in one-dimensional asymmetric Hubbard model,
and show that the fidelity susceptibility can be used to identify the
universality class of the quantum phase transitions in this model. The critical
exponents are found to be 0 and 2 for cases of half-filling and away from
half-filling respectively.Comment: 4 pages, 4 figure
Perfect State Transfer, Effective Gates and Entanglement Generation in Engineered Bosonic and Fermionic Networks
We show how to achieve perfect quantum state transfer and construct effective
two-qubit gates between distant sites in engineered bosonic and fermionic
networks. The Hamiltonian for the system can be determined by choosing an
eigenvalue spectrum satisfying a certain condition, which is shown to be both
sufficient and necessary in mirror-symmetrical networks. The natures of the
effective two-qubit gates depend on the exchange symmetry for fermions and
bosons. For fermionic networks, the gates are entangling (and thus universal
for quantum computation). For bosonic networks, though the gates are not
entangling, they allow two-way simultaneous communications. Protocols of
entanglement generation in both bosonic and fermionic engineered networks are
discussed.Comment: RevTeX4, 6 pages, 1 figure; replaced with a more general example and
clarified the sufficient and necessary condition for perfect state transfe
Parametrical optimization of laser surface alloyed NiTi shape memory alloy with Co and Nb by the Taguchi method
Different high-purity metal powders were successfully alloyed on to a nickel titanium (NiTi) shape memory alloy (SMA) with a 3 kW carbon dioxide (CO2) laser system. In order to produce an alloyed layer with complete penetration and acceptable composition profile, the Taguchi approach was used as a statistical technique for optimizing selected laser processing parameters. A systematic study of laser power, scanning velocity, and pre-paste powder thickness was conducted. The signal-to-noise ratios (S/N) for each control factor were calculated in order to assess the deviation from the average response. Analysis of variance (ANOVA) was carried out to understand the significance of process variables affecting the process effects. The Taguchi method was able to determine the laser process parameters for the laser surface alloying technique with high statistical accuracy and yield a laser surface alloying technique capable of achieving a desirable dilution ratio. Energy dispersive spectrometry consistently showed that the per cent by weight of Ni was reduced by 45 per cent as compared with untreated NiTi SMA when the Taguchi-determined laser processing parameters were employed, thus verifying the laser's processing parameters as optimum
- …