12,849 research outputs found

    Superdiffusive heat conduction in semiconductor alloys -- II. Truncated L\'evy formalism for experimental analysis

    Full text link
    Nearly all experimental observations of quasi-ballistic heat flow are interpreted using Fourier theory with modified thermal conductivity. Detailed Boltzmann transport equation (BTE) analysis, however, reveals that the quasi-ballistic motion of thermal energy in semiconductor alloys is no longer Brownian but instead exhibits L\'evy dynamics with fractal dimension α<2\alpha < 2. Here, we present a framework that enables full 3D experimental analysis by retaining all essential physics of the quasi-ballistic BTE dynamics phenomenologically. A stochastic process with just two fitting parameters describes the transition from pure L\'evy superdiffusion as short length and time scales to regular Fourier diffusion. The model provides accurate fits to time domain thermoreflectance raw experimental data over the full modulation frequency range without requiring any `effective' thermal parameters and without any a priori knowledge of microscopic phonon scattering mechanisms. Identified α\alpha values for InGaAs and SiGe match ab initio BTE predictions within a few percent. Our results provide experimental evidence of fractal L\'evy heat conduction in semiconductor alloys. The formalism additionally indicates that the transient temperature inside the material differs significantly from Fourier theory and can lead to improved thermal characterization of nanoscale devices and material interfaces

    Finite Element Modelling for Fracture of Multilayer Fibrous Networks

    Get PDF
    Tissue engineering involves three-dimensional scaffolds to support cell culture activities and provide mechanical support. One of the potential scaffolds used in tissue engineering is an electrospun scaffold consisting fibres ranging from nano- to micrometer scales deposited on layer stack. The finite element models have been used to study the in-plane deformation of two-dimensional single layer fibrous networks and without considers out-of-plane deformation. While the existing study focuses on two-dimensional study, the out-of-plane deformation of layer structured of electrospun scaffolds through the scaffolds thickness has not been studied. In this study, three-dimensional finite element model was constructed to investigate the fracture of multilayer fibrous networks. The three-dimensional results were compared with the fracture on two-dimensional single layer fibrous network. The result shows that these two models had identical fracture behaviour and similar deformation at the crack-tip region, where the fibres are rearranged and reoriented with similar stress distribution. The work here concludes that two-dimensional single layer fibrous network model is a simple yet effective model for the study of homogeneous fibrous networks

    Effects of microstructure architecture on the fracture of fibrous materials

    Get PDF
    Fibrous materials is one of the potential scaffolds used for tissue engineered constructs. One of prerequisite properties for tissue engineered construct is fracture property. The work here study the relationship between microstructure architecture and fracture behavior of fibrous networks by using finite element analysis. The result shows that fibrous networks are toughened by either reducing the fiber density or cross-link percentage of networks. Such implementation increases the degree of non-affine deformation and produces a more compliant response at the crack-tip region. The non-affine deformation in fibrous networks involves fiber movement like fiber rearrangement and reorientation, where such mechanisms allow stress delocalization to occur at the crack-tip region and results in a better fracture toughness of fibrous networks. The findings form this work provide the design guideline of fibrous materials with enhanced toughness for multiple applications

    Pseudo spin-orbit coupling of Dirac particles in graphene spintronics

    Full text link
    We study the pseudo spin-orbital (SO) effects experienced by massive Dirac particles in graphene, which can potentially be of a larger magnitude compared to the conventional Rashba SO effects experienced by particles in a 2DEG semiconductor heterostructure. In order to generate a uniform vertical pseudo SO field, we propose an artificial atomic structure, consisting of a graphene ring and a charged nanodot at the center which produces a large radial electric field. In this structure, a large pseudo SO coupling strength can be achieved by accelerating the Dirac particles around the ring, due to the small energy gap in graphene and the large radial electric field emanating from the charged nanodot. We discuss the theoretical possibility of harnessing the pseudo SO effects in mesoscopic applications, e.g. pseudo spin relaxation and switching.Comment: 12 pages, 1 figur

    Self-reported domain-specific and accelerometer-based physical activity and sedentary behaviour in relation to psychological distress among an urban Asian population

    Get PDF
    Background: The interpretation of previous studies on the association of physical activity and sedentary behaviour with psychological health is limited by the use of mostly self-reported physical activity and sedentary behaviour, and a focus on Western populations. We aimed to explore the association of self-reported and devise-based measures of physical activity and sedentary behaviour domains on psychological distress in an urban multi-ethnic Asian population. Methods: From a population-based cross-sectional study of adults aged 18-79 years, data were used from an overall sample (n = 2653) with complete self-reported total physical activity/sedentary behaviour and domain-specific physical activity data, and a subsample (n = 703) with self-reported domain-specific sedentary behaviour and accelerometry data. Physical activity and sedentary behaviour data were collected using the Global Physical Activity Questionnaire (GPAQ), a domain-specific sedentary behaviour questionnaire and accelerometers. The Kessler Screening Scale (K6) and General Health Questionnaire (GHQ-12) were used to assess psychological distress. Logistic regression models were used to calculate odds ratios (ORs) and 95% confidence intervals, adjusted for socio-demographic and lifestyle characteristics. Results: The sample comprised 45.0% men (median age = 45.0 years). The prevalence of psychological distress based on the K6 and GHQ-12 was 8.4% and 21.7%, respectively. In the adjusted model, higher levels of self-reported moderate-to-vigorous physical activity (MVPA) were associated with significantly higher odds for K6 (OR = 1.47 [1.03-2.10]; p-trend = 0.03) but not GHQ-12 (OR = 0.97 [0.77-1.23]; p-trend = 0.79), when comparing the highest with the lowest tertile. Accelerometry-assessed MVPA was not significantly associated with K6 (p-trend = 0.50) nor GHQ-12 (p-trend = 0.74). The highest tertile of leisure-time physical activity, but not work- or transport-domain activity, was associated with less psychological distress using K6 (OR = 0.65 [0.43-0.97]; p-trend = 0.02) and GHQ-12 (OR = 0.72 [0.55-0.93]; p-trend = 0.01). Self-reported sedentary behaviour was not associated with K6 (p-trend = 0.90) and GHQ-12 (p-trend = 0.33). The highest tertile of accelerometry-assessed sedentary behaviour was associated with significantly higher odds for K6 (OR = 1.93 [1.00-3.75]; p-trend = 0.04), but not GHQ-12 (OR = 1.34 [0.86-2.08]; p-trend = 0.18). Conclusions: Higher levels of leisure-time physical activity and lower levels of accelerometer-based sedentary behaviour were associated with lower psychological distress. This study underscores the importance of assessing accelerometer-based and domain-specific activity in relation to mental health, instead of solely focusing on total volume of activity

    Surface Operators in N=2 Abelian Gauge Theory

    Full text link
    We generalise the analysis in [arXiv:0904.1744] to superspace, and explicitly prove that for any embedding of surface operators in a general, twisted N=2 pure abelian theory on an arbitrary four-manifold, the parameters transform naturally under the SL(2,Z) duality of the theory. However, for nontrivially-embedded surface operators, exact S-duality holds if and only if the "quantum" parameter effectively vanishes, while the overall SL(2,Z) duality holds up to a c-number at most, regardless. Nevertheless, this observation sets the stage for a physical proof of a remarkable mathematical result by Kronheimer and Mrowka--that expresses a "ramified" analog of the Donaldson invariants solely in terms of the ordinary Donaldson invariants--which, will appear, among other things, in forthcoming work. As a prelude to that, the effective interaction on the corresponding u-plane will be computed. In addition, the dependence on second Stiefel-Whitney classes and the appearance of a Spin^c structure in the associated low-energy Seiberg-Witten theory with surface operators, will also be demonstrated. In the process, we will stumble upon an interesting phase factor that is otherwise absent in the "unramified" case.Comment: 46 pages. Minor refinemen

    Fate and occurrence of alkylphenolic compounds in sewage sludges determined by liquid chromatography tandem mass spectrometry

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2009 Taylor & Francis.An analytical method has been developed and applied to determine the concentrations of the nonionic alkylphenol polyethoxylate surfactants and their metabolites, alkylphenoxy carboxylates and alkyphenols, in sewage sludges. The compounds were extracted with methanol/acetone (1:1 v/v) from sludge, and concentrated extracts were cleaned by silica solid‐phase extraction prior to determination by liquid chromatography tandem mass spectrometry. The recoveries, determined by spiking sewage sludge at two concentrations, ranged from 51% to 89% with method detection limits from 6 µg kg−1 to 60 µg kg−1. The methodology was subsequently applied to sludge samples obtained from a carbonaceous activated sludge plant, a nitrifying/denitrifying activated sludge plant and a nitrifying/denitrifying activated sludge plant with phosphorus removal. Concentrations of nonylphenolic compounds were two to three times higher than their octyl analogues. Long‐chain nonylphenol polyethoxylates (NP3–12EO) ranged from 16 µg kg−1 to 11754 µg kg−1. The estrogenic metabolite nonylphenol was present at concentrations ranging from 33 µg kg−1 to 6696 µg kg−1.Public Utilities Board of Singapore, Thames Water and Yorkshire Water

    Parts verification for multi-level-dependent demand manufacturing systems: a recognition and classification structure

    Get PDF
    This research has developed and implemented a part recognition and classification structure to execute parts verification in a multi-level dependent demand manufacturing system. The part recognition algorithm enables the parent and child relationship between parts to be recognised in a finite-capacitated manufacturing system. This algorithm was developed using SIMAN simulation language and implemented in a multi-level dependent demand manufacturing simulation model. The part classification structure enables the modelling of a multi-level dependent demand manufacturing between parts to be carried out effectively. The part classification structure was programmed using Visual Basic Application (VBA) and was integrated to the work-to-list generated from a simulated MRP model. This part classification structure was then implemented in the multi-level dependent demand manufacturing simulation model. Two stages of implementation, namely parameterisation and execution, of the part recognition and classification structure were carried out. A real case study was used and five detail steps of execution were processed. Simulation experiments and MRP were run to verify and validate the part recognition and classification structure. The results led to the conclusion that implementation of the recognition and classification structure has effectively verified the correct parts and sub-assemblies used for the correct product and order. No parts and sub-assemblies shortages were found, and the quantity required was produced. The scheduled release for some orders was delayed due to overload of the required resources. When the loading is normal, all scheduled release timing is adhered to. The recognition and classification structure has a robust design; hence it can be easily adapted to new systems parameter to study a different or more complex case

    Hole density dependence of effective mass, mobility and transport time in strained Ge channel modulation-doped heterostructures

    Get PDF
    We performed systematic low-temperature (T = 350 mK–15 K) magnetotransport measurements on the two-dimensional hole gas with various sheet carrier densities Ps = (0.57–2.1)×1012 cm–2 formed in the strained Ge channel modulation-doped (MOD) SiGe heterostructures grown on Si substrates. It was found that the effective hole mass deduced by temperature dependent Shubnikov–de Hass oscillations increased monotonically from (0.087±0.05)m0 to (0.19±0.01)m0 with the increase of Ps, showing large band nonparabolicity in strained Ge. In contrast to this result, the increase of the mobility with increasing Ps (up to 29 000 cm2/V s) was observed, suggesting that Coulomb scattering played a dominant role in the transport of the Ge channel at low temperatures. In addition, the Dingle ratio of the transport time to the quantum lifetime was found to increase with increasing Ps, which was attributed to the increase of remote impurity scattering with the increase of the doping concentration in MOD SiGe layers
    corecore