26 research outputs found

    Carbon nanotube based composite membranes for water desalination by membrane distillation

    Get PDF
    New technologies are required to improve desalination efficiency and increase water treatment capacities. One promising low energy technique to produce potable water from either sea or sewage water is membrane distillation (MD). However, to be competitive with other desalination processes, membranes need to be designed specifically for the MD process requirements. Here we report on the design of carbon nanotube (CNT) based composite material membranes for direct contact membrane distillation (DCMD). The membranes were characterized and tested in a DCMD setup under different feed temperatures and test conditions. The composite CNT structures showed significantly improved performance compared to their pure self-supporting CNT counterparts. The best composite CNT membranes gave permeabilities as high as 3.3×(10 to the 12th power)kg/m s Pa) with an average salt rejection of 95% and lifespan of up to 39 h of continuous testing, making them highly promising candidates for DCMD

    Fabrication of bioinspired composite nanofiber membranes with robust superhydrophobicity for direct contact membrane distillation

    No full text
    The practical application of membrane distillation (MD) for water purification is hindered by the absence of desirable membranes that can fulfill the special requirements of the MD process. Compared to the membranes fabricated by other methods, nanofiber membranes produced by electrospinning are of great interest due to their high porosity, low tortuosity, large surface pore size, and high surface hydrophobicity. However, the stable performance of the nanofiber membranes in the MD process is still unsatisfactory. Inspired by the unique structure of the lotus leaf, this study aimed to develop a strategy to construct superhydrophobic composite nanofiber membranes with robust superhydrophobicity and high porosity suitable for use in MD. The newly developed membrane consists of a superhydrophobic silica-PVDF composite selective skin formed on a polyvinylidene fluoride (PVDF) porous nanofiber scaffold via electrospinning. This fabrication method could be easily scaled up due to its simple preparation procedures. The effects of silica diameter and concentration on membrane contact angle, sliding angle, and MD performance were investigated thoroughly. For the first time, the direct contact membrane distillation (DCMD) tests demonstrate that the newly developed membranes are able to present stable high performance over 50 h of testing time, and the superhydrophobic selective layer exhibits excellent durability in ultrasonic treatment and a continuous DCMD test. It is believed that this novel design strategy has great potential for MD membrane fabrication.NRF (Natl Research Foundation, S’pore)EDB (Economic Devt. Board, S’pore)Accepted versio
    corecore