1,079 research outputs found
An analytic model of rotationally inelastic collisions of polar molecules in electric fields
We present an analytic model of thermal state-to-state rotationally inelastic
collisions of polar molecules in electric fields. The model is based on the
Fraunhofer scattering of matter waves and requires Legendre moments
characterizing the "shape" of the target in the body-fixed frame as its input.
The electric field orients the target in the space-fixed frame and thereby
effects a striking alteration of the dynamical observables: both the phase and
amplitude of the oscillations in the partial differential cross sections
undergo characteristic field-dependent changes that transgress into the partial
integral cross sections. As the cross sections can be evaluated for a field
applied parallel or perpendicular to the relative velocity, the model also
offers predictions about steric asymmetry. We exemplify the field-dependent
quantum collision dynamics with the behavior of the Ne-OCS() and
Ar-NO() systems. A comparison with the close-coupling calculations
available for the latter system [Chem. Phys. Lett. \textbf{313}, 491 (1999)]
demonstrates the model's ability to qualitatively explain the field dependence
of all the scattering features observed
The nonlinear time-dependent response of isotactic polypropylene
Tensile creep tests, tensile relaxation tests and a tensile test with a
constant rate of strain are performed on injection-molded isotactic
polypropylene at room temperature in the vicinity of the yield point. A
constitutive model is derived for the time-dependent behavior of
semi-crystalline polymers. A polymer is treated as an equivalent network of
chains bridged by permanent junctions. The network is modelled as an ensemble
of passive meso-regions (with affine nodes) and active meso-domains (where
junctions slip with respect to their positions in the bulk medium with various
rates). The distribution of activation energies for sliding in active
meso-regions is described by a random energy model. Adjustable parameters in
the stress--strain relations are found by fitting experimental data. It is
demonstrated that the concentration of active meso-domains monotonically grows
with strain, whereas the average potential energy for sliding of junctions and
the standard deviation of activation energies suffer substantial drops at the
yield point. With reference to the concept of dual population of crystalline
lamellae, these changes in material parameters are attributed to transition
from breakage of subsidiary (thin) lamellae in the sub-yield region to
fragmentation of primary (thick) lamellae in the post-yield region of
deformation.Comment: 29 pages, 12 figure
Fourth Order Algorithms for Solving the Multivariable Langevin Equation and the Kramers Equation
We develop a fourth order simulation algorithm for solving the stochastic
Langevin equation. The method consists of identifying solvable operators in the
Fokker-Planck equation, factorizing the evolution operator for small time steps
to fourth order and implementing the factorization process numerically. A key
contribution of this work is to show how certain double commutators in the
factorization process can be simulated in practice. The method is general,
applicable to the multivariable case, and systematic, with known procedures for
doing fourth order factorizations. The fourth order convergence of the
resulting algorithm allowed very large time steps to be used. In simulating the
Brownian dynamics of 121 Yukawa particles in two dimensions, the converged
result of a first order algorithm can be obtained by using time steps 50 times
as large. To further demostrate the versatility of our method, we derive two
new classes of fourth order algorithms for solving the simpler Kramers equation
without requiring the derivative of the force. The convergence of many fourth
order algorithms for solving this equation are compared.Comment: 19 pages, 2 figure
Conventional superconductivity at 203 K at high pressures
A superconductor is a material that can conduct electricity with no
resistance below its critical temperature (Tc). The highest Tc that has been
achieved in cuprates1 is 133 K at ambient pressure2 and 164 K at high
pressures3. As the nature of superconductivity in these materials has still not
been explained, the prospects for a higher Tc are not clear. In contrast, the
Bardeen-Cooper-Schrieffer (BCS) theory gives a guide for achieving high Tc and
does not put bounds on Tc, all that is needed is a favorable combination of
high frequency phonons, strong electron-phonon coupling, and a high density of
states. These conditions can be fulfilled for metallic hydrogen and covalent
compounds dominated by hydrogen4,5. Numerous calculations support this idea and
predict Tc of 50-235 K for many hydrides6 but only moderate Tc=17 K has been
observed experimentally7. Here we studied sulfur hydride8 where a Tc~80 K was
predicted9. We found that it transforms to a metal at pressure ~90 GPa. With
cooling superconductivity was found deduced from a sharp drop of the
resistivity to zero and a decrease of Tc with magnetic field. The pronounce
isotope shift of Tc in D2S is evidence of an electron-phonon mechanism of
superconductivity that is consistent with the BCS scenario. The
superconductivity has been confirmed by magnetic susceptibility measurements
with Tc=203K. The high Tc superconductivity most likely is due to H3S which is
formed from H2S under its decomposition under pressure. Even higher Tc, room
temperature superconductivity, can be expected in other hydrogen-based
materials since hydrogen atoms provide the high frequency phonon modes as well
as the strong electron-phonon coupling
Kinetic equations for thermal degradation of polymers
Kinetic equations are analyzed for thermal degradation of polymers. The
governing relations are based on the fragmentation-annihilation concept.
Explicit solutions to these equations are derived in two particular cases of
interest. For arbitrary values of adjustable parameters, the evolution of the
number-average and mass-average molecular weights of polymers is analyzed
numerically. Good agreement is demonstrated between the results of numerical
simulation and experimental data. It is revealed that the model can correctly
predict observations in thermo-gravimetric tests when its parameters are
determined by matching experimental data for the decrease in molecular weight
with exposure time
Termination dependent topological surface states of the natural superlattice phase BiSe
We describe the topological surface states of BiSe, a compound in the
infinitely adaptive Bi-BiSe natural superlattice phase series,
determined by a combination of experimental and theoretical methods. Two
observable cleavage surfaces, terminating at Bi or Se, are characterized by
angle resolved photoelectron spectroscopy and scanning tunneling microscopy,
and modeled by ab-initio density functional theory calculations. Topological
surface states are observed on both surfaces, but with markedly different
dispersions and Kramers point energies. BiSe therefore represents the
only known compound with different topological states on differently terminated
surfaces.Comment: 5 figures references added Published in PRB:
http://link.aps.org/doi/10.1103/PhysRevB.88.08110
Gene Network Inference and Biochemical Assessment Delineates GPCR Pathways and CREB Targets in Small Intestinal Neuroendocrine Neoplasia
Small intestinal (SI) neuroendocrine tumors (NET) are increasing in incidence, however little is known about their biology. High throughput techniques such as inference of gene regulatory networks from microarray experiments can objectively define signaling machinery in this disease. Genome-wide co-expression analysis was used to infer gene relevance network in SI-NETs. The network was confirmed to be non-random, scale-free, and highly modular. Functional analysis of gene co-expression modules revealed processes including ‘Nervous system development’, ‘Immune response’, and ‘Cell-cycle’. Importantly, gene network topology and differential expression analysis identified over-expression of the GPCR signaling regulators, the cAMP synthetase, ADCY2, and the protein kinase A, PRKAR1A. Seven CREB response element (CRE) transcripts associated with proliferation and secretion: BEX1, BICD1, CHGB, CPE, GABRB3, SCG2 and SCG3 as well as ADCY2 and PRKAR1A were measured in an independent SI dataset (n = 10 NETs; n = 8 normal preparations). All were up-regulated (p<0.035) with the exception of SCG3 which was not differently expressed. Forskolin (a direct cAMP activator, 10−5 M) significantly stimulated transcription of pCREB and 3/7 CREB targets, isoproterenol (a selective ß-adrenergic receptor agonist and cAMP activator, 10−5 M) stimulated pCREB and 4/7 targets while BIM-53061 (a dopamine D2 and Serotonin [5-HT2] receptor agonist, 10−6 M) stimulated 100% of targets as well as pCREB; CRE transcription correlated with the levels of cAMP accumulation and PKA activity; BIM-53061 stimulated the highest levels of cAMP and PKA (2.8-fold and 2.5-fold vs. 1.8–2-fold for isoproterenol and forskolin). Gene network inference and graph topology analysis in SI NETs suggests that SI NETs express neural GPCRs that activate different CRE targets associated with proliferation and secretion. In vitro studies, in a model NET cell system, confirmed that transcriptional effects are signaled through the cAMP/PKA/pCREB signaling pathway and that a SI NET cell line was most sensitive to a D2 and 5-HT2 receptor agonist BIM-53061.© 2011 Drozdov et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
- …