1,758 research outputs found
Implications of Low Energy Supersymmetry Breaking at the Tevatron
The signatures for low energy supersymmetry breaking at the Tevatron are
investigated. It is natural that the lightest standard model superpartner is an
electroweak neutralino, which decays to an essentially massless Goldstino and
photon, possibly within the detector. In the simplest models of gauge-mediated
supersymmetry breaking, the production of right-handed sleptons, neutralinos,
and charginos leads to a pair of hard photons accompanied by leptons and/or
jets with missing transverse energy. The relatively hard leptons and softer
photons of the single e^+e^- \gamma \gamma + \EmissT event observed by CDF
implies this event is best interpreted as arising from left-handed slepton pair
production. In this case the rates for l^{\pm} \gamma \gamma + \EmissT and
\gamma \gamma + \EmissT are comparable to that for l^+l^- \gamma \gamma +
\EmissT.Comment: 18 pages, Latex, tables correcte
Renormalization in General Gauge Mediation
We revisit General Gauge Mediation (GGM) in light of the supersymmetric
(linear) sigma model by utilizing the current superfield. The current
superfield in the GGM is identified with supersymmetric extension of the vector
symmetry current of the sigma model while spontaneous breakdown of
supersymmetry in the GGM corresponds to soft breakdown of the axial vector
symmetry of the sigma model. We first derive the current superfield from the
supersymmetric linear sigma model and then compute 2-point functions of the
current superfield using the (anti-)commutation relations of the messenger
component fields. After the global symmetry are weakly gauged, the 2-point
functions of the current superfield are identified with a part of the 2-point
functions of the associated vector superfield. We renormalize them by
dimensional regularization and show that physical gaugino and sfermion masses
of the MSSM are expressed in terms of the wavefunction renormalization
constants of the component fields of the vector superfield.Comment: 25 pages, 12 figure
Symmetric Points in the Landscape as Cosmological Attractors
In the landscape, if there is to be any prospect of scientific prediction, it
is crucial that there be states which are distinguished in some way. The
obvious candidates are states which exhibit symmetries. Here we focus on states
which exhibit discrete symmetries. Such states are rare, but one can speculate
that they are cosmological attractors. We investigate the problem in model
landscapes and cosmologies which capture some of the features of candidate flux
landscapes. In non-supersymmetric theories we find no evidence that such states
might be cosmologically favored. In supersymmetric theories, simple arguments
suggest that states which exhibit symmetries might be. Our considerations
lead us to raise questions about some popular models of eternal inflation.Comment: 27 pages, latex, minor typo correcte
A Model of Direct Gauge Mediation
We present a simple model of gauge mediation (GM) which does not have a
messenger sector or gauge singlet fields. The standard model gauge groups
couple directly to the sector which breaks supersymmetry dynamically. This is
the first phenomenologically viable example of this type in the literature.
Despite the direct coupling, the model can preserve perturbative gauge
unification. This is achieved by the inverted hierarchy mechanism which
generates a large scalar expectation value compared to the size of
supersymmetry breaking. There is no dangerous negative contribution to the
squark, slepton masses due to two-loop renormalization group equation. The
potentially non-universal supergravity contribution to the scalar masses can be
suppressed enough to maintain the virtue of the gauge mediation. The model is
completely chiral, and one does not need to forbid mass terms for the messenger
fields by hand. Beyond the simplicity of the model, it possesses cosmologically
desirable features compared to the original models of GM: an improved gravitino
and string moduli cosmology. The Polonyi problem is back unlike in the original
GM models, but is still much less serious than in hidden sector models.Comment: LaTeX, 12 page
Remarks on the Racetrack Scheme
There are only a small number of ideas for stabilizing the moduli of string
theory. One of the most appealing of these is the racetrack mechanism, in which
a delicate interplay between two strongly interacting gauge groups fixes the
value of the coupling constant. In this note, we explore this scenario. We find
that quite generally, some number of discrete tunings are required in order
that the mechanism yield a small gauge coupling. Even then, there is no sense
in which a weak coupling approximation is valid. On the other hand, certain
holomorphic quantities can be computed, so such a scheme is in principle
predictive. Searching for models which realize this mechanism is thus of great
interest. We also remark on cosmology in these schemes.Comment: 20 pp, latex, discussion of calculability modifie
Cosmological vacuum selection and metastable susy breaking
We study gauge mediation in a wide class of O'Raifeartaigh type models where
supersymmetry breaking metastable vacuum is created by gravity and/or quantum
corrections. We examine their thermal evolution in the early universe and the
conditions under which the susy breaking vacuum can be selected. It is
demonstrated that thermalization typically makes the metastable supersymmetry
breaking cosmologically disfavoured but this is not always the case. Initial
conditions with the spurion displaced from the symmetric thermal minimum and a
small coupling to the messenger sector can result in the realization of the
susy breaking vacuum even if the reheating temperature is high. We show that
this can be achieved without jeopardizing the low energy phenomenology. In
addition, we have found that deforming the models by a supersymmetric mass term
for messengers in such a way that the susy breaking minimum and the susy
preserving minima are all far away from the origin does not change the
conclusions. The basic observations are expected to hold also in the case of
models with an anomalous U(1) group.Comment: 28 pages, 4 figures, plain Latex, journal versio
Supersymmetry Breaking in the Early Universe
Supersymmetry breaking in the early universe induces scalar soft potentials
with curvature of order the Hubble constant. This has a dramatic effect on the
coherent production of scalar fields along flat directions. For the moduli
problem it generically gives a concrete realization of the problem by
determining the field value subsequent to inflation. However it might suggest a
solution if the minimum of the induced potential coincides with the true
minimum. The induced Hubble scale mass also has important implications for the
Affleck-Dine mechanism of baryogenesis. This mechanism requires large squark or
slepton expectation values to develop along flat directions in the early
universe. This is generally not the case if the induced mass squared is
positive, but does occur if it is negative. The resulting baryon to entropy
ratio depends mainly on the dimension of the nonrenormalizable operator in the
superpotential which stabilizes the flat direction, and the reheat temperature
after inflation. Unlike the original scenario, it is possible to obtain an
acceptable baryon asymmetry without subsequent entropy releases.Comment: 11 pages, requires phyzz
Cosmological Constraint on the String Dilaton in Gauge-mediated Supersymmetry Breaking Theories
The dilaton field in string theories (if exists) is expected to have a mass
of the order of the gravitino mass which is in a range of
keV--1GeV in gauge-mediated supersymmetry breaking models. If it is
the case, the cosmic energy density of coherent dilaton oscillation easily
exceeds the critical density of the present universe. We show that even if this
problem is solved by a late-time entropy production (thermal inflation) a
stringent constraint on the energy density of the dilaton oscillation is
derived from experimental upperbounds on the cosmic X()-ray
backgrounds. This excludes an interesting mass region, , in gauge-mediated supersymmetry breaking models.Comment: 13 pages (RevTex file including one figure, use psfig), revised
version to be published in Physical Review Letter
Topcolor-Assisted Supersymmetry
It has been known that the supersymmetric flavor changing neutral current
problem can be avoided if the squarks take the following mass pattern, namely
the first two generations with the same chirality are degenerate with masses
around the weak scale, while the third generation is very heavy. We realize
this scenario through the supersymmetric extension of a topcolor model with
gauge mediated supersymmetry breaking.Comment: 12 pages, latex, no figure
Gluino Condensation in Strongly Coupled Heterotic String Theory
Strongly coupled heterotic string theory, compactified to
four dimensions on a large Calabi-Yau manifold , may represent a
viable candidate for the description of low-energy particle phenomenology. In
this regime, heterotic string theory is adequately described by low-energy
-theory on , with the two
's supported at the two boundaries of the world. In this paper we study
the effects of gluino condensation, as a mechanism for supersymmetry breaking
in this -theory regime. We show that when a gluino condensate forms in
-theory, the conditions for unbroken supersymmetry can still be satisfied
locally in the orbifold dimension . Supersymmetry is then
only broken by the global topology of the orbifold dimension, in a mechanism
similar to the Casimir effect. This mechanism leads to a natural hierarchy of
scales, and elucidates some aspects of heterotic string theory that might be
relevant to the stabilization of moduli and the smallness of the cosmological
constant.Comment: 22 pages, harvmac, no figure
- âŠ