82 research outputs found
Heavy Military Land Vehicle Mass Properties Estimation Using Hoisting and Pendulum Motion Method
Mass properties such as the centre of gravity location, moments of inertia, and total mass are of great importance for vehicle stability studies and deployment. Certain parameters are required when these vehicles need to be arranged inside an aircraft for the carrier to achieve proper mass balance and stability during a flight. These parameters are also important for the design and modelling process of vehicle rollover crash studies. In this study, the mass properties of a military armoured vehicle were estimated using hoisting and pendulum method. The gross total weight, longitudinal and vertical measurements were recorded by lifting the vehicle using a mobile crane and the data were used to estimate the centre of gravity. The frequency of vehicle oscillation was measured by applying swing motion with a small angle of the vehicle as it is suspended on air. The centre of gravity and mass moment of inertia were calculated using the vector mechanics approach. The outcomes and limitations of the approach as discussed in details
The role of mathematical modeling in VOC analysis using isoprene as a prototypic example
Isoprene is one of the most abundant endogenous volatile organic compounds
(VOCs) contained in human breath and is considered to be a potentially useful
biomarker for diagnostic and monitoring purposes. However, neither the exact
biochemical origin of isoprene nor its physiological role are understood in
sufficient depth, thus hindering the validation of breath isoprene tests in
clinical routine.
Exhaled isoprene concentrations are reported to change under different
clinical and physiological conditions, especially in response to enhanced
cardiovascular and respiratory activity. Investigating isoprene exhalation
kinetics under dynamical exercise helps to gather the relevant experimental
information for understanding the gas exchange phenomena associated with this
important VOC.
A first model for isoprene in exhaled breath has been developed by our
research group. In the present paper, we aim at giving a concise overview of
this model and describe its role in providing supportive evidence for a
peripheral (extrahepatic) source of isoprene. In this sense, the results
presented here may enable a new perspective on the biochemical processes
governing isoprene formation in the human body.Comment: 17 page
Monitoring of oxidative and metabolic stress during cardiac surgery by means of breath biomarkers: an observational study
Research articl
Laser spectroscopy for breath analysis : towards clinical implementation
Detection and analysis of volatile compounds in exhaled breath represents an attractive tool for monitoring the metabolic status of a patient and disease diagnosis, since it is non-invasive and fast. Numerous studies have already demonstrated the benefit of breath analysis in clinical settings/applications and encouraged multidisciplinary research to reveal new insights regarding the origins, pathways, and pathophysiological roles of breath components. Many breath analysis methods are currently available to help explore these directions, ranging from mass spectrometry to laser-based spectroscopy and sensor arrays. This review presents an update of the current status of optical methods, using near and mid-infrared sources, for clinical breath gas analysis over the last decade and describes recent technological developments and their applications. The review includes: tunable diode laser absorption spectroscopy, cavity ring-down spectroscopy, integrated cavity output spectroscopy, cavity-enhanced absorption spectroscopy, photoacoustic spectroscopy, quartz-enhanced photoacoustic spectroscopy, and optical frequency comb spectroscopy. A SWOT analysis (strengths, weaknesses, opportunities, and threats) is presented that describes the laser-based techniques within the clinical framework of breath research and their appealing features for clinical use.Peer reviewe
Stability and Thermal Conductivity Characteristic of Carbon Nanotube Based Nanofluids
Heat transfer fluids such as water, ethylene glycol and engine oil are commonly used in heat exchanger applications. However these fluids posses low thermal conductivity. The technology advancement in nanotechnology has enabled the nano size particles to be included in a base fluid. This new generation of fluid is known as nanofluids. Producing a stable nanofluid with improved thermal conductivity is a challenging process. The suspended nanoparticles tend to sediment with respect to time. In the present study, multiwall carbon nanotubes (MWCNT) based nanofluids with or without surfactant were investigated in the aspect of stability and thermal conductivity. Study implies that nanofluids added with polyvinylpyrrolidone (PVP) surfactant exhibit better stability compared to nanofluids without surfactant. About 22.2% thermal conductivity improvement was observed for water containing 0.5wt% of MWCNT and 0.1wt% of PVP surfactant. The thermal conductivity also increases with the increasing of MWCNT’s weight fraction
On the enhancement of the fatigue fracture performance of polymer matrix composites by reinforcement with carbon nanotubes: a systematic review
Rapid development of carbon nanotubes (CNTs) reinforced to polymer composites has been recently noticed in many aspects. In this work, the latest developments on fatigue and fracture enhancement of polymer composites with CNTs reinforcement with diverse methods are thoroughly compiled and systematically reviewed. The existing available researches clearly demonstrate that fatigue fracture resistance of polymer composites can be improved accordingly with the addition of CNTs. However, this work identifies an interesting research gap for the first time in this field. Based on the systematic reviewing approach, it is noticed that all previously performed experiments in this field were mostly focused upon studying one factor only at a time. In addition, it is also addressed that there were no previous studies reported a relationship or effect of one factor upon others during examining the fatigue fracture of carbon nanotubes. Moreover, there was no adequate discussion demonstrating the interaction of parameters or the influence of one parameter upon another when both were examined simultaneously. It is also realized that the scope of the conducted fatigue fracture studies of carbon nanotubes were mainly focused on microscale fatigue analysis but not the macroscale one, which can consider the effect of environment and service condition. In addition, the inadequacy of fatigue life predicting models via analytical and numerical methods for CNT-reinforced polymer composites have also been highlighted. Besides, barriers and challenges for future directions on the application of CNT-reinforced polymer composite materials are also discussed here in details
An Effective Feature Extraction Method Used in Breath Analysis
2nd International Conference on Medical Biometrics, ICMB 2010, Hong Kong, 28-30 June 2010It has been reported that human breath could represent some kinds of diseases. By analyzing the components of breath odor, it is easy to detect the diseases the subjects infected. The accuracy of breath analysis depends greatly on what feature are extracted from the response curve of breath analysis system. In this paper, we proposed an effective feature extraction method based on curve fitting for breath analysis, where breath odor were captured and processed by a self-designed breath analysis system. Two parametric analytic models were used to fit the ascending and descending part of the sensor signals respectively, and the set of best-fitting parameters were taken as features. This process is fast, robust, and with less fitting error than other fitting models. Experimental results showed that the features extracted by our method can significantly enhance the performance of subsequent classification algorithms.Department of Computin
- …