2 research outputs found

    A comparison of the molecular mechanisms underpinning high-intensity, pulsed polychromatic light and low-intensity UV-C hormesis in tomato fruit

    Get PDF
    Postharvest treatment of tomato fruit with high-intensity, pulsed polychromatic light (HIPPL) has previously been shown to induce delayed ripening and disease resistance comparable to that of low-intensity UV-C (LIUV). Little, however, is known of the mechanisms underpinning postharvest HIPPL hormesis in tomato fruit. Expression of genes involved in plant hormone biosynthesis, defence, secondary metabolism and ripening were monitored 24 h post treatment (24 HPT), 10 d post treatment (10 DPT) and 12 h post inoculation with Botrytis cinerea (12 HPI). All genes monitored were constitutively expressed and changes in expression profiles following treatment were highly similar for both HIPPL and LIUV treatments. Expression of pathogenesis-related proteins P4, β-1,3,-Glucanase and Chitinase 9 and a jasmonate biosynthesis enzyme (OPR3), were significantly upregulated at 10 DPT and 12 HPI. Both treatments significantly downregulated the expression of polygalacturonase and flavonol synthase at 10 DPT and 12 HPI. Ethylene biosynthesis enzyme ACO1 and β-carotene hydroxylase were significantly upregulated at 24 HPT, and phenylalanine ammonia-lyase (PAL) was significantly upregulated at 12 HPI. Both HIPPL and LIUV treatments stimulate defence responses that are mediated by salicylic acid, jasmonic acid and ethylene. This may lead to broad range resistance against both necrotrophic and biotrophic pathogens as well as abiotic stresses and herbivorous pests. Following inoculation with B. cinerea only PAL showed indication of a gene priming response for HIPPL- and LIUV-treated fruit

    A comparison of low intensity UV-C and high intensity pulsed polychromatic sources as elicitors of hormesis in tomato fruit

    Get PDF
    Post-harvest hormetic treatment of mature green tomato fruit (Solanum lycopersicum cv. Mecano) with high intensity pulsed polychromatic light (HIPPL) significantly delayed ripening to levels comparable to those achieved using a conventional low intensity UV-C (LIUV) source. A 16 pulse HIPPL treatment reduced the ΔTCI (tomato colour index) by 50.1 % whilst treatment with a LIUV source led to a reduction of 43.1 %. Moreover, the 16 pulse treatment also induced disease resistance in the fruit to Botrytis cinerea with a 41.7 % reduction in disease progression compared to a 38.1 % reduction for the LIUV source. A single 16 pulse HIPPL treatment was found to significantly reduce disease progression on both mature green and ripe fruit with a 28.5 % reduction on ripe fruit in comparison to 13.4 % for the LIUV treatment. It is shown here that delayed ripening and disease resistance are local responses in side treated tomato fruit for both LIUV and HIPPL treatments. Finally, utilising a 16 pulse HIPPL treatment would reduce treatment times from 370 s for LIUV sources to 10 s per fruit - a 97.3 % reduction
    corecore