35 research outputs found

    Stratification in polarization and Faraday rotation in the jet of 3C 120

    Get PDF
    Very long baseline interferometric observations of the radio galaxy 3C 120 show a systematic presence of gradients in Faraday rotation and degree of polarization across and along the jet. These are revealed by the passage of multiple superluminal components throughout the jet as they move out from the core in a sequence of 12 monthly polarimetric observations taken with the VLBA at 15, 22, and 43 GHz. The degree of polarization has an asymmetric profile in which the northern side of the jet is more highly polarized. The Faraday rotation measure is also stratified across the jet width, with larger values for the southern side. Superposed on this structure we find a localized region of high Faraday rotation measure (about 6000 rad/m^2) between approximately 3 and 4 mas from the core. This region of enhanced Faraday rotation may result from the interaction of the jet with the ambient medium, which may also explain the stratification in degree of polarization. The data are also consistent with a helical magnetic field in a two-fluid jet model, consisting of an inner emitting jet and a sheath of nonrelativistic electrons.Comment: To be published by the Memorie della Societa Astronomica Italiana, Vol. 79, in the Proceedings of the Workshop: "The Central Kiloparsec: Active Galactic Nuclei and Their Hosts", eds. A.Lobanov, E.Angelakis, M.Perucho, and A.Zensus. 4 pages (including 4 figures

    Anisotropic scaling features and complexity in magnetospheric-cusp: a case study

    Get PDF
    Magnetospheric cusps are high-latitude regions characterized by a highly turbulent plasma, playing a special role in the solar wind-magnetosphere interaction. Here, using POLAR satellite magnetic field vector measurements we investigate the anisotropic scaling features of the magnetic field fluctuations in the northern cusp region. Our results seem to support the hypothesis of a 2D-MHD turbulent scenario which is consequence of a strong background magnetic field. The observed turbulent fluctuations reveal a high degree of complexity, which might be due to the interplay of many competing scales. A discussion of our findings in connection with the complex scenario proposed by Chang et al. (2004) is provided

    Probing the Inner Jet of the Quasar PKS 1510-089 with Multi-waveband Monitoring during Strong Gamma-ray Activity

    Full text link
    We present results from monitoring the multi-waveband flux, linear polarization, and parsec-scale structure of the quasar PKS 1510-089, concentrating on eight major gamma-ray flares that occurred during the interval 2009.0-2009.5. The gamma-ray peaks were essentially simultaneous with maxima at optical wavelengths, although the flux ratio of the two wavebands varied by an order of magnitude. The optical polarization vector rotated by 720 degrees during a 5-day period encompassing six of these flares. This culminated in a very bright, roughly 1 day, optical and gamma-ray flare as a bright knot of emission passed through the highest-intensity, stationary feature (the "core") seen in 43 GHz Very Long Baseline Array images. The knot continued to propagate down the jet at an apparent speed of 22c and emit strongly at gamma-ray energies as a months-long X-ray/radio outburst intensified. We interpret these events as the result of the knot following a spiral path through a mainly toroidal magnetic field pattern in the acceleration and collimation zone of the jet, after which it passes through a standing shock in the 43 GHz core and then continues downstream. In this picture, the rapid gamma-ray flares result from scattering of infrared seed photons from a relatively slow sheath of the jet as well as from optical synchrotron radiation in the faster spine. The 2006-2009.7 radio and X-ray flux variations are correlated at very high significance; we conclude that the X-rays are mainly from inverse Compton scattering of infrared seed photons by 20-40 MeV electrons.Comment: 10 pages of text + 5 figures, to be published in Astrophysical Journal Letters in 201

    On the Location of the Gamma-ray Emission in the 2008 Outburst in the BL Lacertae Object AO 0235+164 through Observations across the Electromagnetic Spectrum

    Get PDF
    We present observations of a major outburst at centimeter, millimeter, optical, X-ray, and gamma-ray wavelengths of the BL Lacertae object AO 0235+164. We analyze the timing of multi-waveband variations in the flux and linear polarization, as well as changes in Very Long Baseline Array (VLBA) images at 7mm with 0.15 milliarcsecond resolution. The association of the events at different wavebands is confirmed at high statistical significance by probability arguments and Monte-Carlo simulations. A series of sharp peaks in optical linear polarization, as well as a pronounced maximum in the 7 mm polarization of a superluminal jet knot, indicate rapid fluctuations in the degree of ordering of the magnetic field. These results lead us to conclude that the outburst occurred in the jet both in the quasi-stationary "core" and in the superluminal knot, both parsecs downstream of the supermassive black hole. We interpret the outburst as a consequence of the propagation of a disturbance, elongated along the line of sight by light-travel time delays, that passes through a standing recollimation shock in the core and propagates down the jet to create the superluminal knot. The multi-wavelength light curves vary together on long time-scales (months/years), but the correspondence is poorer on shorter time-scales. This, as well as the variability of the polarization and the dual location of the outburst, agrees with the expectations of a multi-zone emission model in which turbulence plays a major role in modulating the synchrotron and inverse Compton fluxes.Comment: Accepted for Publication in the Astrophysical Journal Letters. 7 pages (including 5 figures). Minor corrections with regard to previous version, as proposed by the refere

    Flaring Behavior of the Quasar 3C~454.3 across the Electromagnetic Spectrum

    Full text link
    We analyze the behavior of the parsec-scale jet of the quasar 3C~454.3 during pronounced flaring activity in 2005-2008. Three major disturbances propagated down the jet along different trajectories with Lorentz factors Γ>\Gamma>10. The disturbances show a clear connection with millimeter-wave outbursts, in 2005 May/June, 2007 July, and 2007 December. High-amplitude optical events in the RR-band light curve precede peaks of the millimeter-wave outbursts by 15-50 days. Each optical outburst is accompanied by an increase in X-ray activity. We associate the optical outbursts with propagation of the superluminal knots and derive the location of sites of energy dissipation in the form of radiation. The most prominent and long-lasting of these, in 2005 May, occurred closer to the black hole, while the outbursts with a shorter duration in 2005 Autumn and in 2007 might be connected with the passage of a disturbance through the millimeter-wave core of the jet. The optical outbursts, which coincide with the passage of superluminal radio knots through the core, are accompanied by systematic rotation of the position angle of optical linear polarization. Such rotation appears to be a common feature during the early stages of flares in blazars. We find correlations between optical variations and those at X-ray and γ\gamma-ray energies. We conclude that the emergence of a superluminal knot from the core yields a series of optical and high-energy outbursts, and that the mm-wave core lies at the end of the jet's acceleration and collimation zone.Comment: 57 pages, 23 figures, 8 tables (submitted to ApJ

    A supernova origin for dust in a high-redshift quasar

    Full text link
    Interstellar dust plays a crucial role in the evolution of the Universe by assisting the formation of molecules, by triggering the formation of the first low-mass stars, and by absorbing stellar ultraviolet-optical light and subsequently re-emitting it at infrared/millimetre wavelengths. Dust is thought to be produced predominantly in the envelopes of evolved (age >1 Gyr), low-mass stars. This picture has, however, recently been brought into question by the discovery of large masses of dust in the host galaxies of quasars at redshift z>6, when the age of the Universe was less than 1 Gyr. Theoretical studies, corroborated by observations of nearby supernova remnants, have suggested that supernovae provide a fast and efficient dust formation environment in the early Universe. Here we report infrared observations of a quasar at redshift 6.2, which are used to obtain directly its dust extinction curve. We then show that such a curve is in excellent agreement with supernova dust models. This result demonstrates a supernova origin for dust in this high-redshift quasar, from which we infer that most of the dust at high redshifts has probably the same origin.Comment: To Appear in Nature, September 30, 200

    Multiwavelength observations of 3C 454.3. III. Eighteen months of AGILE monitoring of the "Crazy Diamond"

    Get PDF
    We report on 18 months of multiwavelength observations of the blazar 3C 454.3 (Crazy Diamond) carried out in July 2007-January 2009. We show the results of the AGILE campaigns which took place on May-June 2008, July-August 2008, and October 2008-January 2009. During the May 2008-January 2009 period, the source average flux was highly variable, from an average gamma-ray flux F(E>100MeV) > 200E-8 ph/cm2/s in May-June 2008, to F(E>100MeV)~80E-8 ph/cm2/s in October 2008-January 2009. The average gamma-ray spectrum between 100 MeV and 1 GeV can be fit by a simple power law (Gamma_GRID ~ 2.0 to 2.2). Only 3-sigma upper limits can be derived in the 20-60 keV energy band with Super-AGILE. During July-August 2007 and May-June 2008, RXTE measured a flux of F(3-20 keV)= 8.4E-11 erg/cm2/s, and F(3-20 keV)=4.5E-11 erg/cm2/s, respectively and a constant photon index Gamma_PCA=1.65. Swift/XRT observations were carried out during all AGILE campaigns, obtaining a F(2-10 keV)=(0.9-7.5)E-11 erg/cm2/s and a photon index Gamma_XRT=1.33-2.04. BAT measured an average flux of ~5 mCrab. GASP-WEBT monitored 3C 454.3 during the whole 2007-2008 period from the radio to the optical. A correlation analysis between the optical and the gamma-ray fluxes shows a time lag of tau=-0.4 days. An analysis of 15 GHz and 43 GHz VLBI core radio flux observations shows an increasing trend of the core radio flux, anti- correlated with the higher frequency data. The modeling SEDs, and the behavior of the long-term light curves in different energy bands, allow us to compare the jet properties during different emission states, and to study the geometrical properties of the jet on a time-span longer than one year.Comment: Accepted for publication in ApJ. Adapted Abstract. 17 pages, 19 Figures, 5 Table

    AGILE detection of extreme gamma-ray activity from the blazar PKS 1510-089 during March 2009. Multifrequency analysis

    Full text link
    We report on the extreme gamma-ray activity from the FSRQ PKS 1510-089 observed by AGILE in March 2009. In the same period a radio-to-optical monitoring of the source was provided by the GASP-WEBT and REM. Moreover, several Swift ToO observations were triggered, adding important information on the source behaviour from optical/UV to hard X-rays. We paid particular attention to the calibration of the Swift/UVOT data to make it suitable to the blazars spectra. Simultaneous observations from radio to gamma rays allowed us to study in detail the correlation among the emission variability at different frequencies and to investigate the mechanisms at work. In the period 9-30 March 2009, AGILE detected an average gamma-ray flux of (311+/-21)x10^-8 ph cm^-2 s^-1 for E>100 MeV, and a peak level of (702+/-131)x10^-8 ph cm^-2 s^-1 on daily integration. The gamma-ray activity occurred during a period of increasing activity from near-IR to UV, with a flaring episode detected on 26-27 March 2009, suggesting that a single mechanism is responsible for the flux enhancement observed from near-IR to UV. By contrast, Swift/XRT observations seem to show no clear correlation of the X-ray fluxes with the optical and gamma-ray ones. However, the X-ray observations show a harder photon index (1.3-1.6) with respect to most FSRQs and a hint of harder-when-brighter behaviour, indicating the possible presence of a second emission component at soft X-ray energies. Moreover, the broad band spectrum from radio-to-UV confirmed the evidence of thermal features in the optical/UV spectrum of PKS 1510-089 also during high gamma-ray state. On the other hand, during 25-26 March 2009 a flat spectrum in the optical/UV energy band was observed, suggesting an important contribution of the synchrotron emission in this part of the spectrum during the brightest gamma-ray flare, therefore a significant shift of the synchrotron peak.Comment: 13 pages, 7 figures, 3 tables. Accepted for publication in Astronomy and Astrophysic
    corecore