4,179 research outputs found
A Very High-beta Optics to be used for an Absolute Luminosity Determination with Forward Detectors in ATLAS
The Atlas experiment at the LHC pursues a number of different approaches to obtain an estimate of the absolute luminosity [3]. Measuring elastic scattering at very small angles (3 μrad) represents a different and complimentary approach that will improve the precision of the final luminosity estimate. In this paper we show the required very high-β optics and the detector acceptance studies
Module production of the one-arm AFP 3D pixel tracker
The ATLAS Forward Proton (AFP) detector is designed to identify events in
which one or two protons emerge intact from the LHC collisions. AFP will
consist of a tracking detector, to measure the momentum of the protons, and a
time of flight system to reduce the background from multiple proton-proton
interactions. Following an extensive qualification period, 3D silicon pixel
sensors were selected for the AFP tracker. The sensors were produced at CNM
(Barcelona) during 2014. The tracker module assembly and quality control was
performed at IFAE during 2015. The assembly of the first AFP arm and the
following installation in the LHC tunnel took place in February 2016. This
paper reviews the fabrication process of the AFP tracker focusing on the pixel
modules.Comment: PIXEL 2016 proceedings; Submitted to JINS
Exact time correlation functions for N classical Heisenberg spins in the `squashed' equivalent neighbor model
We present exact integral representations of the time-dependent spin-spin
correlation functions for the classical Heisenberg N-spin `squashed' equivalent
neighbor model, in which one spin is coupled via the Heisenberg exchange
interaction with strength to the other N-1 spins, each of which is
coupled via the Heisenberg exchange coupling with strength to the
remaining N-2 spins. At low temperature T we find that the N spins oscillate in
four modes, one of which is a central peak for a semi-infinite range of the
values of the exchange coupling ratio. For the N=4 case of four spins on a
squashed tetrahedron, detailed numerical evaluations of these results are
presented. As , we calculate exactly the long-time asymptotic
behavior of the correlation functions for arbitrary N, and compare our results
with those obtained for three spins on an isosceles triangle.Comment: 9 pages, 8 figures, submitted to Phys. Rev.
Report on Running Channels in iseg 32-Ch HV Power Supplies
We report a study and solution of the so-called "running channel" (RC) phenomenon observed in the iseg 32-channel HV power supplies for the ATLAS Liquid Argon Calorimetry
Confronting models on cosmic ray interactions with particle physics at LHC energies
Inelastic pp collisions are dominated by soft (low momentum transfer) physics
where perturbative QCD cannot be fully applied. A deep understanding of both
soft and semi-hard processes is crucial for predictions of minimum bias and
underlying events of the now coming on line pp Large Hadron Collider (LHC).
Moreover, the interaction of cosmic ray particles entering in the atmosphere is
extremely sensitive to these soft processes and consequently cannot be
formulated from first principles. Because of this, air shower analyses strongly
rely on hadronic interaction models, which extrapolate collider data several
orders of magnitude. A comparative study of Monte Carlo simulations of pp
collisions (at the LHC center-of-mass energy ~ 14 TeV) using the most popular
hadronic interaction models for ultrahigh energy cosmic ray (SIBYLL and QGSJET)
and for collider physics (the PYTHIA multiparton model) is presented. The most
relevant distributions are studied including those observables from diffractive
events with the aim of discriminating between the different models.Comment: 8 pages revtex, 8 figures, added reference
Time Correlation Functions of Three Classical Heisenberg Spins on an Isosceles Triangle and on a Chain: Strong Effects of Broken Symmetry
At arbitrary temperature , we solve for the dynamics of single molecule
magnets composed of three classical Heisenberg spins either on a chain with two
equal exchange constants , or on an isosceles triangle with a third,
different exchange constant . As T\rightrarrow\infty, the Fourier
transforms and long-time asymptotic behaviors of the two-spin time correlation
functions are evaluated exactly. The lack of translational symmetry on a chain
or an isosceles triangle yields time correlation functions that differ
strikingly from those on an equilateral trinagle with . At low ,
the Fourier transforms of the two autocorrelation functions with
show one and four modes, respectively. For a semi-infinite range, one
mode is a central peak. At the origin of this range, this mode has a novel
scaling form.Comment: 9 pages, 14 figures, accepted for publication in Phys. Rev.
The High Voltage Feedthroughs for the ATLAS Liquid Argon Calorimeters
The purpose, design specifications, construction techniques, and testing
methods are described for the high voltage feedthrough ports and filters of the
ATLAS Liquid Argon calorimeters. These feedthroughs carry about 5000 high
voltage wires from a room-temperature environment (300 K) through the cryostat
walls to the calorimeters cells (89 K) while maintaining the electrical and
cryogenic integrity of the system. The feedthrough wiring and filters operate
at a maximum high voltage of 2.5 kV without danger of degradation by corona
discharges or radiation at the Large Hadron Collider
Hadron beam test of a scintillating fibre tracker system for elastic scattering and luminosity measurement in ATLAS
A scintillating fibre tracker is proposed to measure elastic proton
scattering at very small angles in the ATLAS experiment at CERN. The tracker
will be located in so-called Roman Pot units at a distance of 240 m on each
side of the ATLAS interaction point. An initial validation of the design
choices was achieved in a beam test at DESY in a relatively low energy electron
beam and using slow off-the-shelf electronics. Here we report on the results
from a second beam test experiment carried out at CERN, where new detector
prototypes were tested in a high energy hadron beam, using the first version of
the custom designed front-end electronics. The results show an adequate
tracking performance under conditions which are similar to the situation at the
LHC. In addition, the alignment method using so-called overlap detectors was
studied and shown to have the expected precision.Comment: 12 pages, 8 figures. Submitted to Journal of Instrumentation (JINST
Double Spin Asymmetries A_NN and A_SS at sqrt{s}=200 GeV in Polarized Proton-Proton Elastic Scattering at RHIC
We present the first measurements of the double spin asymmetries A_NN and
A_SS at sqrt{s}=200 GeV, obtained by the pp2pp experiment using polarized
proton beams at the Relativistic Heavy Ion Collider (RHIC). The data were
collected in the four momentum transfer t range 0.01<|t|<0.03 (GeV/c)^2. The
measured asymmetries, which are consistent with zero, allow us to estimate
upper limits on the double helicity-flip amplitudes phi_2 and phi_4 at small t
as well as on the difference Delta(sigma_T) between the total cross sections
for transversely polarized protons with antiparallel or parallel spin
orientations.Comment: 13 pages with 3 figures. Final version accepted by Phys. Lett.
First Measurement of A_N at sqrt(s)=200 GeV in Polarized Proton-Proton Elastic Scattering at RHIC
We report on the first measurement of the single spin analyzing power (A_N)
at sqrt(s)=200GeV, obtained by the pp2pp experiment using polarized proton
beams at the Relativistic Heavy Ion Collider (RHIC). Data points were measured
in the four momentum transfer t range 0.01 < |t| < 0.03 (GeV/c)^2. Our result,
averaged over the whole t-interval is about one standard deviation above the
calculation, which uses interference between electromagnetic spin-flip
amplitude and hadronic non-flip amplitude, the source of A_N. The difference
could be explained by an additional contribution of a hadronic spin-flip
amplitude to A_N.Comment: 13 pages, 5 figures. New values of polarization errors. Final version
submitted to Phys. Lett.
- …