4,179 research outputs found

    A Very High-beta Optics to be used for an Absolute Luminosity Determination with Forward Detectors in ATLAS

    No full text
    The Atlas experiment at the LHC pursues a number of different approaches to obtain an estimate of the absolute luminosity [3]. Measuring elastic scattering at very small angles (3 μrad) represents a different and complimentary approach that will improve the precision of the final luminosity estimate. In this paper we show the required very high-β optics and the detector acceptance studies

    Module production of the one-arm AFP 3D pixel tracker

    Full text link
    The ATLAS Forward Proton (AFP) detector is designed to identify events in which one or two protons emerge intact from the LHC collisions. AFP will consist of a tracking detector, to measure the momentum of the protons, and a time of flight system to reduce the background from multiple proton-proton interactions. Following an extensive qualification period, 3D silicon pixel sensors were selected for the AFP tracker. The sensors were produced at CNM (Barcelona) during 2014. The tracker module assembly and quality control was performed at IFAE during 2015. The assembly of the first AFP arm and the following installation in the LHC tunnel took place in February 2016. This paper reviews the fabrication process of the AFP tracker focusing on the pixel modules.Comment: PIXEL 2016 proceedings; Submitted to JINS

    Exact time correlation functions for N classical Heisenberg spins in the `squashed' equivalent neighbor model

    Full text link
    We present exact integral representations of the time-dependent spin-spin correlation functions for the classical Heisenberg N-spin `squashed' equivalent neighbor model, in which one spin is coupled via the Heisenberg exchange interaction with strength J1J_1 to the other N-1 spins, each of which is coupled via the Heisenberg exchange coupling with strength J2J_2 to the remaining N-2 spins. At low temperature T we find that the N spins oscillate in four modes, one of which is a central peak for a semi-infinite range of the values of the exchange coupling ratio. For the N=4 case of four spins on a squashed tetrahedron, detailed numerical evaluations of these results are presented. As TT\to\infty, we calculate exactly the long-time asymptotic behavior of the correlation functions for arbitrary N, and compare our results with those obtained for three spins on an isosceles triangle.Comment: 9 pages, 8 figures, submitted to Phys. Rev.

    Report on Running Channels in iseg 32-Ch HV Power Supplies

    Get PDF
    We report a study and solution of the so-called "running channel" (RC) phenomenon observed in the iseg 32-channel HV power supplies for the ATLAS Liquid Argon Calorimetry

    Confronting models on cosmic ray interactions with particle physics at LHC energies

    Get PDF
    Inelastic pp collisions are dominated by soft (low momentum transfer) physics where perturbative QCD cannot be fully applied. A deep understanding of both soft and semi-hard processes is crucial for predictions of minimum bias and underlying events of the now coming on line pp Large Hadron Collider (LHC). Moreover, the interaction of cosmic ray particles entering in the atmosphere is extremely sensitive to these soft processes and consequently cannot be formulated from first principles. Because of this, air shower analyses strongly rely on hadronic interaction models, which extrapolate collider data several orders of magnitude. A comparative study of Monte Carlo simulations of pp collisions (at the LHC center-of-mass energy ~ 14 TeV) using the most popular hadronic interaction models for ultrahigh energy cosmic ray (SIBYLL and QGSJET) and for collider physics (the PYTHIA multiparton model) is presented. The most relevant distributions are studied including those observables from diffractive events with the aim of discriminating between the different models.Comment: 8 pages revtex, 8 figures, added reference

    Time Correlation Functions of Three Classical Heisenberg Spins on an Isosceles Triangle and on a Chain: Strong Effects of Broken Symmetry

    Full text link
    At arbitrary temperature TT, we solve for the dynamics of single molecule magnets composed of three classical Heisenberg spins either on a chain with two equal exchange constants J1J_1, or on an isosceles triangle with a third, different exchange constant J2J_2. As T\rightrarrow\infty, the Fourier transforms and long-time asymptotic behaviors of the two-spin time correlation functions are evaluated exactly. The lack of translational symmetry on a chain or an isosceles triangle yields time correlation functions that differ strikingly from those on an equilateral trinagle with J1=J2J_1=J_2. At low TT, the Fourier transforms of the two autocorrelation functions with J1J2J_1\ne J_2 show one and four modes, respectively. For a semi-infinite J2/J1J_2/J_1 range, one mode is a central peak. At the origin of this range, this mode has a novel scaling form.Comment: 9 pages, 14 figures, accepted for publication in Phys. Rev.

    The High Voltage Feedthroughs for the ATLAS Liquid Argon Calorimeters

    Get PDF
    The purpose, design specifications, construction techniques, and testing methods are described for the high voltage feedthrough ports and filters of the ATLAS Liquid Argon calorimeters. These feedthroughs carry about 5000 high voltage wires from a room-temperature environment (300 K) through the cryostat walls to the calorimeters cells (89 K) while maintaining the electrical and cryogenic integrity of the system. The feedthrough wiring and filters operate at a maximum high voltage of 2.5 kV without danger of degradation by corona discharges or radiation at the Large Hadron Collider

    Hadron beam test of a scintillating fibre tracker system for elastic scattering and luminosity measurement in ATLAS

    Full text link
    A scintillating fibre tracker is proposed to measure elastic proton scattering at very small angles in the ATLAS experiment at CERN. The tracker will be located in so-called Roman Pot units at a distance of 240 m on each side of the ATLAS interaction point. An initial validation of the design choices was achieved in a beam test at DESY in a relatively low energy electron beam and using slow off-the-shelf electronics. Here we report on the results from a second beam test experiment carried out at CERN, where new detector prototypes were tested in a high energy hadron beam, using the first version of the custom designed front-end electronics. The results show an adequate tracking performance under conditions which are similar to the situation at the LHC. In addition, the alignment method using so-called overlap detectors was studied and shown to have the expected precision.Comment: 12 pages, 8 figures. Submitted to Journal of Instrumentation (JINST

    Double Spin Asymmetries A_NN and A_SS at sqrt{s}=200 GeV in Polarized Proton-Proton Elastic Scattering at RHIC

    Get PDF
    We present the first measurements of the double spin asymmetries A_NN and A_SS at sqrt{s}=200 GeV, obtained by the pp2pp experiment using polarized proton beams at the Relativistic Heavy Ion Collider (RHIC). The data were collected in the four momentum transfer t range 0.01<|t|<0.03 (GeV/c)^2. The measured asymmetries, which are consistent with zero, allow us to estimate upper limits on the double helicity-flip amplitudes phi_2 and phi_4 at small t as well as on the difference Delta(sigma_T) between the total cross sections for transversely polarized protons with antiparallel or parallel spin orientations.Comment: 13 pages with 3 figures. Final version accepted by Phys. Lett.

    First Measurement of A_N at sqrt(s)=200 GeV in Polarized Proton-Proton Elastic Scattering at RHIC

    Get PDF
    We report on the first measurement of the single spin analyzing power (A_N) at sqrt(s)=200GeV, obtained by the pp2pp experiment using polarized proton beams at the Relativistic Heavy Ion Collider (RHIC). Data points were measured in the four momentum transfer t range 0.01 < |t| < 0.03 (GeV/c)^2. Our result, averaged over the whole t-interval is about one standard deviation above the calculation, which uses interference between electromagnetic spin-flip amplitude and hadronic non-flip amplitude, the source of A_N. The difference could be explained by an additional contribution of a hadronic spin-flip amplitude to A_N.Comment: 13 pages, 5 figures. New values of polarization errors. Final version submitted to Phys. Lett.
    corecore