9,636 research outputs found
A Deep Pyramid Deformable Part Model for Face Detection
We present a face detection algorithm based on Deformable Part Models and
deep pyramidal features. The proposed method called DP2MFD is able to detect
faces of various sizes and poses in unconstrained conditions. It reduces the
gap in training and testing of DPM on deep features by adding a normalization
layer to the deep convolutional neural network (CNN). Extensive experiments on
four publicly available unconstrained face detection datasets show that our
method is able to capture the meaningful structure of faces and performs
significantly better than many competitive face detection algorithms
Deep Feature-based Face Detection on Mobile Devices
We propose a deep feature-based face detector for mobile devices to detect
user's face acquired by the front facing camera. The proposed method is able to
detect faces in images containing extreme pose and illumination variations as
well as partial faces. The main challenge in developing deep feature-based
algorithms for mobile devices is the constrained nature of the mobile platform
and the non-availability of CUDA enabled GPUs on such devices. Our
implementation takes into account the special nature of the images captured by
the front-facing camera of mobile devices and exploits the GPUs present in
mobile devices without CUDA-based frameorks, to meet these challenges.Comment: ISBA 201
- …