8,487 research outputs found

    Microscopic theory for the glass transition in a system without static correlations

    Full text link
    We study the orientational dynamics of infinitely thin hard rods of length L, with the centers-of-mass fixed on a simple cubic lattice with lattice constant a.We approximate the influence of the surrounding rods onto dynamics of a pair of rods by introducing an effective rotational diffusion constant D(l),l=L/a. We get D(l) ~ [1-v(l)], where v(l) is given through an integral of a time-dependent torque-torque correlator of an isolated pair of rods. A glass transition occurs at l_c, if v(l_c)=1. We present a variational and a numerically exact evaluation of v(l).Close to l_c the diffusion constant decreases as D(l) ~ (l_c-l)^\gamma, with \gamma=1. Our approach predicts a glass transition in the absence of any static correlations, in contrast to present form of mode coupling theory.Comment: 6 pages, 3 figure

    Saddle index properties, singular topology, and its relation to thermodynamical singularities for a phi^4 mean field model

    Full text link
    We investigate the potential energy surface of a phi^4 model with infinite range interactions. All stationary points can be uniquely characterized by three real numbers $\alpha_+, alpha_0, alpha_- with alpha_+ + alpha_0 + alpha_- = 1, provided that the interaction strength mu is smaller than a critical value. The saddle index n_s is equal to alpha_0 and its distribution function has a maximum at n_s^max = 1/3. The density p(e) of stationary points with energy per particle e, as well as the Euler characteristic chi(e), are singular at a critical energy e_c(mu), if the external field H is zero. However, e_c(mu) \neq upsilon_c(mu), where upsilon_c(mu) is the mean potential energy per particle at the thermodynamic phase transition point T_c. This proves that previous claims that the topological and thermodynamic transition points coincide is not valid, in general. Both types of singularities disappear for H \neq 0. The average saddle index bar{n}_s as function of e decreases monotonically with e and vanishes at the ground state energy, only. In contrast, the saddle index n_s as function of the average energy bar{e}(n_s) is given by n_s(bar{e}) = 1+4bar{e} (for H=0) that vanishes at bar{e} = -1/4 > upsilon_0, the ground state energy.Comment: 9 PR pages, 6 figure

    Microscopic theory of glassy dynamics and glass transition for molecular crystals

    Full text link
    We derive a microscopic equation of motion for the dynamical orientational correlators of molecular crystals. Our approach is based upon mode coupling theory. Compared to liquids we find four main differences: (i) the memory kernel contains Umklapp processes, (ii) besides the static two-molecule orientational correlators one also needs the static one-molecule orientational density as an input, where the latter is nontrivial, (iii) the static orientational current density correlator does contribute an anisotropic, inertia-independent part to the memory kernel, (iv) if the molecules are assumed to be fixed on a rigid lattice, the tensorial orientational correlators and the memory kernel have vanishing l,l'=0 components. The resulting mode coupling equations are solved for hard ellipsoids of revolution on a rigid sc-lattice. Using the static orientational correlators from Percus-Yevick theory we find an ideal glass transition generated due to precursors of orientational order which depend on X and p, the aspect ratio and packing fraction of the ellipsoids. The glass formation of oblate ellipsoids is enhanced compared to that for prolate ones. For oblate ellipsoids with X <~ 0.7 and prolate ellipsoids with X >~ 4, the critical diagonal nonergodicity parameters in reciprocal space exhibit more or less sharp maxima at the zone center with very small values elsewhere, while for prolate ellipsoids with 2 <~ X <~ 2.5 we have maxima at the zone edge. The off-diagonal nonergodicity parameters are not restricted to positive values and show similar behavior. For 0.7 <~ X <~ 2, no glass transition is found. In the glass phase, the nonergodicity parameters show a pronounced q-dependence.Comment: 17 pages, 12 figures, accepted at Phys. Rev. E. v4 is almost identical to the final paper version. It includes, compared to former versions v2/v3, no new physical content, but only some corrected formulas in the appendices and corrected typos in text. In comparison to version v1, in v2-v4 some new results have been included and text has been change

    Microscopic Dynamics of Hard Ellipsoids in their Liquid and Glassy Phase

    Full text link
    To investigate the influence of orientational degrees of freedom onto the dynamics of molecular systems in its supercooled and glassy regime we have solved numerically the mode-coupling equations for hard ellipsoids of revolution. For a wide range of volume fractions ϕ\phi and aspect ratios x0x_{0} we find an orientational peak in the center of mass spectra χ000′′(q,ω)\chi_{000}^{''}(q,\omega) and ϕ000′′(q,ω)\phi_{000}^{''} (q,\omega) about one decade below a high frequency peak. This orientational peak is the counterpart of a peak appearing in the quadrupolar spectra χ22m′′(q,ω)\chi_{22m}^{''}(q,\omega) and ϕ22m′′(q,ω)\phi_{22m}^{''}(q,\omega). The latter peak is almost insensitive on ϕ\phi for x0x_{0} close to one, i.e. for weak steric hindrance, and broadens strongly with increasing x0x_{0}. Deep in the glass we find an additional peak between the orientational and the high frequency peak. We have evidence that this intermediate peak is the result of a coupling between modes with l=0l=0 and l=2l=2, due to the nondiagonality of the static correlators.Comment: 6 figures, 12 page

    Affine crystal structure on rigged configurations of type D_n^(1)

    Full text link
    Extending the work arXiv:math/0508107, we introduce the affine crystal action on rigged configurations which is isomorphic to the Kirillov-Reshetikhin crystal B^{r,s} of type D_n^(1) for any r,s. We also introduce a representation of B^{r,s} (r not equal to n-1,n) in terms of tableaux of rectangular shape r x s, which we coin Kirillov-Reshetikhin tableaux (using a non-trivial analogue of the type A column splitting procedure) to construct a bijection between elements of a tensor product of Kirillov-Reshetikhin crystals and rigged configurations.Comment: 26 pages, 3 figures. (v3) corrections in the proof reading. (v2) 26 pages; examples added; introduction revised; final version. (v1) 24 page

    Dynamical precursor of nematic order in a dense fluid of hard ellipsoids of revolution

    Full text link
    We investigate hard ellipsoids of revolution in a parameter regime where no long range nematic order is present but already finite size domains are formed which show orientational order. Domain formation leads to a substantial slowing down of a collective rotational mode which separates well from the usual microscopic frequency regime. A dynamic coupling of this particular mode into all other modes provides a general mechanism which explains an excess peak in spectra of molecular fluids. Using molecular dynamics simulation on up to 4096 particles and on solving the molecular mode coupling equation we investigate dynamic properties of the peak and prove its orientational origin.Comment: RevTeX4 style, 7 figure
    • …
    corecore