977 research outputs found

    An improved perturbation approach to the 2D Edwards polymer -- corrections to scaling

    Full text link
    We present the results of a new perturbation calculation in polymer statistics which starts from a ground state that already correctly predicts the long chain length behaviour of the mean square end--to--end distance ⟨RN2⟩ \langle R_N^2 \rangle\ , namely the solution to the 2~dimensional~(2D) Edwards model. The ⟨RN2⟩\langle R_N^2 \rangle thus calculated is shown to be convergent in NN, the number of steps in the chain, in contrast to previous methods which start from the free random walk solution. This allows us to calculate a new value for the leading correction--to--scaling exponent~Δ\Delta. Writing ⟨RN2⟩=AN2ν(1+BN−Δ+CN−1+...)\langle R_N^2 \rangle = AN^{2\nu}(1+BN^{-\Delta} + CN^{-1}+...), where ν=3/4\nu = 3/4 in 2D, our result shows that Δ=1/2\Delta = 1/2. This value is also supported by an analysis of 2D self--avoiding walks on the {\em continuum}.Comment: 17 Pages of Revtex. No figures. Submitted to J. Phys.

    Nonlinear structures: explosive, soliton and shock in a quantum electron-positron-ion magnetoplasma

    Full text link
    Theoretical and numerical studies are performed for the nonlinear structures (explosive, solitons and shock) in quantum electron-positron-ion magnetoplasmas. For this purpose, the reductive perturbation method is employed to the quantum hydrodynamical equations and the Poisson equation, obtaining extended quantum Zakharov-Kuznetsov equation. The latter has been solved using the generalized expansion method to obtain a set of analytical solutions, which reflect the possibility of the propagation of various nonlinear structures. The relevance of the present investigation to the white dwarfs is highlighted.Comment: 7 figure

    Comparison between resistive and collisionless double tearing modes for nearby resonant surfaces

    Get PDF
    The linear instability and nonlinear dynamics of collisional (resistive) and collisionless (due to electron inertia) double tearing modes (DTMs) are compared with the use of a reduced cylindrical model of a tokamak plasma. We focus on cases where two q = 2 resonant surfaces are located a small distance apart. It is found that regardless of the magnetic reconnection mechanism, resistivity or electron inertia, the fastest growing linear eigenmodes may have high poloidal mode numbers m ~ 10. The spectrum of unstable modes tends to be broader in the collisionless case. In the nonlinear regime, it is shown that in both cases fast growing high-m DTMs lead to an annular collapse involving small magnetic island structures. In addition, collisionless DTMs exhibit multiple reconnection cycles due to reversibility of collisionless reconnection and strong ExB flows. Collisionless reconnection leads to a saturated stable state, while in the collisional case resistive decay keeps the system weakly dynamic by driving it back towards the unstable equilibrium maintained by a source term.Comment: 15 pages, 9 figure

    On radiative corrections for unpolarized electron proton elastic scattering

    Get PDF
    A statistical analysis of the elastic unpolarized electron proton scattering data shows that, at large momentum transfer, the size and the ϵ\epsilon dependence of the radiative corrections, as traditionally calculated and applied, may induce large correlations of the parameters of the Rosenbluth fit, which prevent a correct extraction of the electric proton form factor. Using the electron QED structure (radiation) function approach the cross section of elastic electron-proton scattering in leading and next-to leading approximations is calculated and expressed as a correction to the Born cross section, which is different for the electric and the magnetic contribution. When properly applied to the data, it may give the solution to the problem of the discrepancy of the polarized and unpolarized results on electron proton scattering.Comment: 11 pagex, 5 figure

    Induced Scattering and Two-Photon Absorption of Alfven Waves with Arbitrary Propagation Angles

    Full text link
    The equation for temporary evolution of spectral energy of collisionless Alfven waves is derived in framework of weak turbulence theory. The main nonlinear processes for such conditions are induced scattering and two quantum absorption of Alfven waves by thermal ions. The equation for velocity distribution of thermal particles is derived that describes diffusion in momentum space due to this nonlinear processes. Comparison is done with the results of another authors. Results obtained are qualitatively differ from the ones obtained for the case of Alfven waves propagation along mean magnetic field.Comment: 8 page

    Turbulence in Clusters of Galaxies and X-Ray Line Profiles

    Full text link
    Large-scale bulk motions and hydrodynamic turbulence in the intergalactic gas inside clusters of galaxies significantly broaden X-ray emission lines. For lines of heavy ions (primarily helium-like and hydrogen-like iron ions), the hydrodynamic broadening is significantly larger than the thermal broadening. Since cluster of galaxies have a negligible optical depth for resonant scattering in forbidden and intercombination lines of these ions, these lines are not additionally broadened. At the same time, they are very intense, which allows deviations of the spectrum from the Gaussian spectrum in the line wings to be investigated. The line shape becomes an important indicator of bulk hydrodynamic processes because the cryogenic detectors of new generation of X-ray observatories will have a high energy resolution (from 5 eV for ASTRO-E2 to 1-2 eV for Constellation-X and XEUS). We use the spectral representation of a Kolmogorov cascade in the inertial range to calculate the characteristic shapes of X-ray lines. Significant deviations in the line profiles from the Gaussian profile (shape asymmetry, additional peaks, sharp breaks in the exponential tails) are expected for large-scale turbulence. The kinematic SZ effect and the X-ray line profile carry different information about the hydrodynamic velocity distribution in clusters of galaxies and complement each other, allowing the redshift, the peculiar velocity of the cluster, and the bulk velocity dispersion to be measured and separatedComment: 29 pages, 12 figures, Astronomy Letters 2003, v.29, p.79

    Possible Method for Measuring the Proton Form Factors in Processes with and without Proton Spin Flip

    Full text link
    The ratio of the squares of the electric and magnetic proton form factors is shown to be proportional to the ratio of the cross sections for the elastic scattering of an unpolarized electron on a partially polarized proton with and without proton spin flip. The initial proton at rest should be polarized along the direction of the motion of the final proton. Similar results are valid for both radiative epep scattering and the photoproduction of pairs on a proton in the Bethe--Heitler kinematics. When the initial proton is fully polarized in the direction of the motion of the final proton, the cross section for the ep→epep \to ep process, as well as for the ep→epγep \to ep \gamma and γp→eeˉp\gamma p \to e \bar e p processes, without (with) proton spin flip is expressed only in terms of the square of the electric (magnetic) proton form factor. Such an experiment on the measurement of the cross sections without and with proton spin flip would make it possible to acquire new independent data on the behavior of GE2(Q2)G_E^2(Q^2) and GM2(Q2)G_M^2(Q^2), which are necessary for resolving the contradictions appearing after the experiment of the JLab collaboration on the measurement of the proton form factors with the method of polarization transfer from the initial electron to the final proton.Comment: 7 pages, revtex

    Evidence for topological nonequilibrium in magnetic configurations

    Full text link
    We use direct numerical simulations to study the evolution, or relaxation, of magnetic configurations to an equilibrium state. We use the full single-fluid equations of motion for a magnetized, non-resistive, but viscous fluid; and a Lagrangian approach is used to obtain exact solutions for the magnetic field. As a result, the topology of the magnetic field remains unchanged, which makes it possible to study the case of topological nonequilibrium. We find two cases for which such nonequilibrium appears, indicating that these configurations may develop singular current sheets.Comment: 10 pages, 5 figure

    Electromagnetic properties of non-Dirac particles with rest spin 1/2

    Full text link
    We resolve a number of questions related to an analytic description of electromagnetic form factors of non-Dirac particles with the rest spin 1/2. We find the general structure of a matrix antisymmetric tensor operator. We obtain two recurrence relations for matrix elements of finite transformations of the proper Lorentz group and explicit formulas for a certain set of such elements. Within the theory of fields with double symmetry, we discuss writing the components of wave vectors of particles in the form of infinite continued fractions. We show that for Q2≤0.5Q^{2} \leq 0.5 (GeV/c)2^{2}, where Q2Q^{2} is the transferred momentum squared, electromagnetic form factors that decrease as Q2Q^{2} increases and are close to those experimentally observed in the proton can be obtained without explicitly introducing an internal particle structure.Comment: 18 pages, 2 figure
    • …
    corecore