24,371 research outputs found
Two quantum analogues of Fisher information from a large deviation viewpoint of quantum estimation
We discuss two quantum analogues of Fisher information, symmetric logarithmic
derivative (SLD) Fisher information and Kubo-Mori-Bogoljubov (KMB) Fisher
information from a large deviation viewpoint of quantum estimation and prove
that the former gives the true bound and the latter gives the bound of
consistent superefficient estimators. In another comparison, it is shown that
the difference between them is characterized by the change of the order of
limits.Comment: LaTeX with iopart.cls, iopart12.clo, iopams.st
Exponents of quantum fixed-length pure state source coding
We derive the optimal exponent of the error probability of the quantum
fixed-length pure state source coding in both cases of blind coding and visible
coding. The optimal exponent is universally attained by Jozsa et al. (PRL, 81,
1714 (1998))'s universal code. In the direct part, a group representation
theoretical type method is essential. In the converse part, Nielsen and Kempe
(PRL, 86, 5184 (2001))'s lemma is essential.Comment: LaTeX2e and revetx4 with
aps,twocolumn,superscriptaddress,showpacs,pra,amssymb,amsmath. The previous
version has a mistak
General Scheme for Perfect Quantum Network Coding with Free Classical Communication
This paper considers the problem of efficiently transmitting quantum states
through a network. It has been known for some time that without additional
assumptions it is impossible to achieve this task perfectly in general --
indeed, it is impossible even for the simple butterfly network. As additional
resource we allow free classical communication between any pair of network
nodes. It is shown that perfect quantum network coding is achievable in this
model whenever classical network coding is possible over the same network when
replacing all quantum capacities by classical capacities. More precisely, it is
proved that perfect quantum network coding using free classical communication
is possible over a network with source-target pairs if there exists a
classical linear (or even vector linear) coding scheme over a finite ring. Our
proof is constructive in that we give explicit quantum coding operations for
each network node. This paper also gives an upper bound on the number of
classical communication required in terms of , the maximal fan-in of any
network node, and the size of the network.Comment: 12 pages, 2 figures, generalizes some of the results in
arXiv:0902.1299 to the k-pair problem and codes over rings. Appeared in the
Proceedings of the 36th International Colloquium on Automata, Languages and
Programming (ICALP'09), LNCS 5555, pp. 622-633, 200
Universal approximation of multi-copy states and universal quantum lossless data compression
We have proven that there exists a quantum state approximating any multi-copy
state universally when we measure the error by means of the normalized relative
entropy. While the qubit case was proven by Krattenthaler and Slater (IEEE
Trans. IT, 46, 801-819 (2000); quant-ph/9612043), the general case has been
open for more than ten years. For a deeper analysis, we have solved the
mini-max problem concerning `approximation error' up to the second order.
Furthermore, we have applied this result to quantum lossless data compression,
and have constructed a universal quantum lossless data compression
Quantum hypothesis testing with group symmetry
The asymptotic discrimination problem of two quantum states is studied in the
setting where measurements are required to be invariant under some symmetry
group of the system. We consider various asymptotic error exponents in
connection with the problems of the Chernoff bound, the Hoeffding bound and
Stein's lemma, and derive bounds on these quantities in terms of their
corresponding statistical distance measures. A special emphasis is put on the
comparison of the performances of group-invariant and unrestricted
measurements.Comment: 33 page
Asymptotic estimation theory for a finite dimensional pure state model
The optimization of measurement for n samples of pure sates are studied. The
error of the optimal measurement for n samples is asymptotically compared with
the one of the maximum likelihood estimators from n data given by the optimal
measurement for one sample.Comment: LaTeX, 23 pages, Doctoral Thesi
Comparison between the Cramer-Rao and the mini-max approaches in quantum channel estimation
In a unified viewpoint in quantum channel estimation, we compare the
Cramer-Rao and the mini-max approaches, which gives the Bayesian bound in the
group covariant model. For this purpose, we introduce the local asymptotic
mini-max bound, whose maximum is shown to be equal to the asymptotic limit of
the mini-max bound. It is shown that the local asymptotic mini-max bound is
strictly larger than the Cramer-Rao bound in the phase estimation case while
the both bounds coincide when the minimum mean square error decreases with the
order O(1/n). We also derive a sufficient condition for that the minimum mean
square error decreases with the order O(1/n).Comment: In this revision, some unlcear parts are clarifie
CIRCULAR DICHROISM OF LIGHT-HARVESTING COMPLEXES FROM PURPLE PHOTOSYNTHETIC BACTERIA
The CD spectra of a range of antenna complexes from several different species of purple photosynthetic bacteria were recorded in the wavelength range of 190 to 930 nm. Analysis of the far UV CD (190 to 250 nm) showed that in each case except for the B800-850 from Chr. vinosum the secondary structure of the light-harvesting complexes contains a large amount of α-helix (50%) and very little 0-pleated sheet. This confirms the predictions of the group of Zuber of a high a-helical content based upon consideration of the primary structures of several antenna apoproteins. The CD spectra from the carotenoids and the bacteriochlorophylls show considerable variations depending upon the type of antenna complex. The different amplitude ratios in the CD spectrum for the bacteriochlorophyll Qy, Qx and Soret bands indicate not only different degrees of exciton coupling, but also a strong and variable hyperchromism (Scherz and Parson, 1984a, b)
Quantum reverse-engineering and reference frame alignment without non-local correlations
Estimation of unknown qubit elementary gates and alignment of reference
frames are formally the same problem. Using quantum states made out of
qubits, we show that the theoretical precision limit for both problems, which
behaves as , can be asymptotically attained with a covariant protocol
that exploits the quantum correlation of internal degrees of freedom instead of
the more fragile entanglement between distant parties. This cuts by half the
number of qubits needed to achieve the precision of the dense covariant coding
protocol
Effect of nonnegativity on estimation errors in one-qubit state tomography with finite data
We analyze the behavior of estimation errors evaluated by two loss functions,
the Hilbert-Schmidt distance and infidelity, in one-qubit state tomography with
finite data. We show numerically that there can be a large gap between the
estimation errors and those predicted by an asymptotic analysis. The origin of
this discrepancy is the existence of the boundary in the state space imposed by
the requirement that density matrices be nonnegative (positive semidefinite).
We derive an explicit form of a function reproducing the behavior of the
estimation errors with high accuracy by introducing two approximations: a
Gaussian approximation of the multinomial distributions of outcomes, and
linearizing the boundary. This function gives us an intuition for the behavior
of the expected losses for finite data sets. We show that this function can be
used to determine the amount of data necessary for the estimation to be treated
reliably with the asymptotic theory. We give an explicit expression for this
amount, which exhibits strong sensitivity to the true quantum state as well as
the choice of measurement.Comment: 9 pages, 4 figures, One figure (FIG. 1) is added to the previous
version, and some typos are correcte
- …