24,371 research outputs found

    Two quantum analogues of Fisher information from a large deviation viewpoint of quantum estimation

    Get PDF
    We discuss two quantum analogues of Fisher information, symmetric logarithmic derivative (SLD) Fisher information and Kubo-Mori-Bogoljubov (KMB) Fisher information from a large deviation viewpoint of quantum estimation and prove that the former gives the true bound and the latter gives the bound of consistent superefficient estimators. In another comparison, it is shown that the difference between them is characterized by the change of the order of limits.Comment: LaTeX with iopart.cls, iopart12.clo, iopams.st

    Exponents of quantum fixed-length pure state source coding

    Get PDF
    We derive the optimal exponent of the error probability of the quantum fixed-length pure state source coding in both cases of blind coding and visible coding. The optimal exponent is universally attained by Jozsa et al. (PRL, 81, 1714 (1998))'s universal code. In the direct part, a group representation theoretical type method is essential. In the converse part, Nielsen and Kempe (PRL, 86, 5184 (2001))'s lemma is essential.Comment: LaTeX2e and revetx4 with aps,twocolumn,superscriptaddress,showpacs,pra,amssymb,amsmath. The previous version has a mistak

    General Scheme for Perfect Quantum Network Coding with Free Classical Communication

    Full text link
    This paper considers the problem of efficiently transmitting quantum states through a network. It has been known for some time that without additional assumptions it is impossible to achieve this task perfectly in general -- indeed, it is impossible even for the simple butterfly network. As additional resource we allow free classical communication between any pair of network nodes. It is shown that perfect quantum network coding is achievable in this model whenever classical network coding is possible over the same network when replacing all quantum capacities by classical capacities. More precisely, it is proved that perfect quantum network coding using free classical communication is possible over a network with kk source-target pairs if there exists a classical linear (or even vector linear) coding scheme over a finite ring. Our proof is constructive in that we give explicit quantum coding operations for each network node. This paper also gives an upper bound on the number of classical communication required in terms of kk, the maximal fan-in of any network node, and the size of the network.Comment: 12 pages, 2 figures, generalizes some of the results in arXiv:0902.1299 to the k-pair problem and codes over rings. Appeared in the Proceedings of the 36th International Colloquium on Automata, Languages and Programming (ICALP'09), LNCS 5555, pp. 622-633, 200

    Universal approximation of multi-copy states and universal quantum lossless data compression

    Full text link
    We have proven that there exists a quantum state approximating any multi-copy state universally when we measure the error by means of the normalized relative entropy. While the qubit case was proven by Krattenthaler and Slater (IEEE Trans. IT, 46, 801-819 (2000); quant-ph/9612043), the general case has been open for more than ten years. For a deeper analysis, we have solved the mini-max problem concerning `approximation error' up to the second order. Furthermore, we have applied this result to quantum lossless data compression, and have constructed a universal quantum lossless data compression

    Quantum hypothesis testing with group symmetry

    Full text link
    The asymptotic discrimination problem of two quantum states is studied in the setting where measurements are required to be invariant under some symmetry group of the system. We consider various asymptotic error exponents in connection with the problems of the Chernoff bound, the Hoeffding bound and Stein's lemma, and derive bounds on these quantities in terms of their corresponding statistical distance measures. A special emphasis is put on the comparison of the performances of group-invariant and unrestricted measurements.Comment: 33 page

    Asymptotic estimation theory for a finite dimensional pure state model

    Get PDF
    The optimization of measurement for n samples of pure sates are studied. The error of the optimal measurement for n samples is asymptotically compared with the one of the maximum likelihood estimators from n data given by the optimal measurement for one sample.Comment: LaTeX, 23 pages, Doctoral Thesi

    Comparison between the Cramer-Rao and the mini-max approaches in quantum channel estimation

    Full text link
    In a unified viewpoint in quantum channel estimation, we compare the Cramer-Rao and the mini-max approaches, which gives the Bayesian bound in the group covariant model. For this purpose, we introduce the local asymptotic mini-max bound, whose maximum is shown to be equal to the asymptotic limit of the mini-max bound. It is shown that the local asymptotic mini-max bound is strictly larger than the Cramer-Rao bound in the phase estimation case while the both bounds coincide when the minimum mean square error decreases with the order O(1/n). We also derive a sufficient condition for that the minimum mean square error decreases with the order O(1/n).Comment: In this revision, some unlcear parts are clarifie

    CIRCULAR DICHROISM OF LIGHT-HARVESTING COMPLEXES FROM PURPLE PHOTOSYNTHETIC BACTERIA

    Get PDF
    The CD spectra of a range of antenna complexes from several different species of purple photosynthetic bacteria were recorded in the wavelength range of 190 to 930 nm. Analysis of the far UV CD (190 to 250 nm) showed that in each case except for the B800-850 from Chr. vinosum the secondary structure of the light-harvesting complexes contains a large amount of α-helix (50%) and very little 0-pleated sheet. This confirms the predictions of the group of Zuber of a high a-helical content based upon consideration of the primary structures of several antenna apoproteins. The CD spectra from the carotenoids and the bacteriochlorophylls show considerable variations depending upon the type of antenna complex. The different amplitude ratios in the CD spectrum for the bacteriochlorophyll Qy, Qx and Soret bands indicate not only different degrees of exciton coupling, but also a strong and variable hyperchromism (Scherz and Parson, 1984a, b)

    Quantum reverse-engineering and reference frame alignment without non-local correlations

    Full text link
    Estimation of unknown qubit elementary gates and alignment of reference frames are formally the same problem. Using quantum states made out of NN qubits, we show that the theoretical precision limit for both problems, which behaves as 1/N21/N^{2}, can be asymptotically attained with a covariant protocol that exploits the quantum correlation of internal degrees of freedom instead of the more fragile entanglement between distant parties. This cuts by half the number of qubits needed to achieve the precision of the dense covariant coding protocol

    Effect of nonnegativity on estimation errors in one-qubit state tomography with finite data

    Full text link
    We analyze the behavior of estimation errors evaluated by two loss functions, the Hilbert-Schmidt distance and infidelity, in one-qubit state tomography with finite data. We show numerically that there can be a large gap between the estimation errors and those predicted by an asymptotic analysis. The origin of this discrepancy is the existence of the boundary in the state space imposed by the requirement that density matrices be nonnegative (positive semidefinite). We derive an explicit form of a function reproducing the behavior of the estimation errors with high accuracy by introducing two approximations: a Gaussian approximation of the multinomial distributions of outcomes, and linearizing the boundary. This function gives us an intuition for the behavior of the expected losses for finite data sets. We show that this function can be used to determine the amount of data necessary for the estimation to be treated reliably with the asymptotic theory. We give an explicit expression for this amount, which exhibits strong sensitivity to the true quantum state as well as the choice of measurement.Comment: 9 pages, 4 figures, One figure (FIG. 1) is added to the previous version, and some typos are correcte
    corecore