13 research outputs found

    Conductance distribution in disordered quantum wires: Crossover between the metallic and insulating regimes

    Full text link
    We calculate the distribution of the conductance P(g) for a quasi-one-dimensional system in the metal to insulator crossover regime, based on a recent analytical method valid for all strengths of disorder. We show the evolution of P(g) as a function of the disorder parameter from a insulator to a metal. Our results agree with numerical studies reported on this problem, and with analytical results for the average and variance of g.Comment: 8 pages, 5 figures. Final version (minor changes

    Universality of the critical conductance distribution in various dimensions

    Full text link
    We study numerically the metal - insulator transition in the Anderson model on various lattices with dimension 2<d42 < d \le 4 (bifractals and Euclidian lattices). The critical exponent ν\nu and the critical conductance distribution are calculated. We confirm that ν\nu depends only on the {\it spectral} dimension. The other parameters - critical disorder, critical conductance distribution and conductance cummulants - depend also on lattice topology. Thus only qualitative comparison with theoretical formulae for dimension dependence of the cummulants is possible

    Conductance fluctuations and boundary conditions

    Full text link
    The conductance fluctuations for various types for two-- and three--dimensional disordered systems with hard wall and periodic boundary conditions are studied, all the way from the ballistic (metallic) regime to the localized regime. It is shown that the universal conductance fluctuations (UCF) depend on the boundary conditions. The same holds for the metal to insulator transition. The conditions for observing the UCF are also given.Comment: 4 pages RevTeX, 5 figures include

    Universal conductance fluctuations in non-integer dimensions

    Full text link
    We propose an Ansatz for Universal conductance fluctuations in continuous dimensions from 0 up to 4. The Ansatz agrees with known formulas for integer dimensions 1, 2 and 3, both for hard wall and periodic boundary conditions. The method is based solely on the knowledge of energy spectrum and standard assumptions. We also study numerically the conductance fluctuations in 4D Anderson model, depending on system size L and disorder W. We find a small plateau with a value diverging logarithmically with increasing L. Universality gets lost just in 4D.Comment: 4 pages, 4 figures submitted to Phys. Rev.

    Metal-insulator transitions in anisotropic 2d systems

    Full text link
    Several phenomena related to the critical behaviour of non-interacting electrons in a disordered 2d tight-binding system with a magnetic field are studied. Localization lengths, critical exponents and density of states are computed using transfer matrix techniques. Scaling functions of isotropic systems are recovered once the dimension of the system in each direction is chosen proportional to the localization length. It is also found that the critical point is independent of the propagation direction, and that the critical exponents for the localization length for both propagating directions are equal to that of the isotropic system (approximately 7/3). We also calculate the critical value of the scaling function for both the isotropic and the anisotropic system. It is found that the isotropic value equals the geometric mean of the two anisotropic values. Detailed numerical studies of the density of states for the isotropic system reveals that for an appreciable amount of disorder the critical energy is off the band center.Comment: 6 pages RevTeX, 6 figures included, submitted to Physical Review

    Symmetry, dimension and the distribution of the conductance at the mobility edge

    Full text link
    The probability distribution of the conductance at the mobility edge, pc(g)p_c(g), in different universality classes and dimensions is investigated numerically for a variety of random systems. It is shown that pc(g)p_c(g) is universal for systems of given symmetry, dimensionality, and boundary conditions. An analytical form of pc(g)p_c(g) for small values of gg is discussed and agreement with numerical data is observed. For g>1g > 1, lnpc(g)\ln p_c(g) is proportional to (g1)(g-1) rather than (g1)2(g-1)^2.Comment: 4 pages REVTeX, 5 figures and 2 tables include

    Magnetic Field Effects on the Transport Properties of One-sided Rough Wires

    Full text link
    We present a detailed numerical analysis of the effect of a magnetic field on the transport properties of a `small-NN' one-sided surface disordered wire. When time reversal symmetry is broken due to a magnetic field BB, we find a strong increase with BB not only of the localization length ξ\xi but also of the mean free path \ell caused by boundary states. Despite this, the universal relationship between \ell and ξ\xi does hold. We also analyze the conductance distribution at the metal-insulator crossover, finding a very good agreement with Random Matrix Theory with two fluctuating channels within the Circular Orthogonal(Unitary) Ensemble in absence(presence) of BBComment: 5 pages, 4 figures, to appear in Phys. Rev.

    Sublocalization, superlocalization, and violation of standard single parameter scaling in the Anderson model

    Full text link
    We discuss the localization behavior of localized electronic wave functions in the one- and two-dimensional tight-binding Anderson model with diagonal disorder. We find that the distributions of the local wave function amplitudes at fixed distances from the localization center are well approximated by log-normal fits which become exact at large distances. These fits are consistent with the standard single parameter scaling theory for the Anderson model in 1d, but they suggest that a second parameter is required to describe the scaling behavior of the amplitude fluctuations in 2d. From the log-normal distributions we calculate analytically the decay of the mean wave functions. For short distances from the localization center we find stretched exponential localization ("sublocalization") in both, 1d and 2d. In 1d, for large distances, the mean wave functions depend on the number of configurations N used in the averaging procedure and decay faster that exponentially ("superlocalization") converging to simple exponential behavior only in the asymptotic limit. In 2d, in contrast, the localization length increases logarithmically with the distance from the localization center and sublocalization occurs also in the second regime. The N-dependence of the mean wave functions is weak. The analytical result agrees remarkably well with the numerical calculations.Comment: 12 pages with 9 figures and 1 tabl
    corecore