616 research outputs found

    Thermal melting of density waves on the square lattice

    Full text link
    We present the theory of the effect of thermal fluctuations on commensurate "p x p" density wave ordering on the square lattice (p >= 3, integer). For the case in which this order is lost by a second order transition, we argue that the adjacent state is generically an incommensurate striped state, with commensurate p-periodic long range order along one direction, and incommensurate quasi-long-range order along the orthogonal direction. We also present the routes by which the fully disordered high temperature state can be reached. For p=4, and at special commensurate densities, the "4 x 4" commensurate state can melt directly into the disordered state via a self-dual critical point with non-universal exponents.Comment: 12 pages, 5 figure

    Phase Diagram for Magnon Condensate in Yttrium Iron Garnet Film

    Get PDF
    Recently, magnons, which are quasiparticles describing the collective motion of spins, were found to undergo Bose-Einstein condensation (BEC) at room temperature in films of Yttrium Iron Garnet (YIG). Unlike other quasiparticle BEC systems, this system has a spectrum with two degenerate minima, which makes it possible for the system to have two condensates in momentum space. Recent Brillouin Light scattering studies for a microwave-pumped YIG film of thickness d=5 μ\mum and field H=1 kOe find a low-contrast interference pattern at the characteristic wavevector QQ of the magnon energy minimum. In this report, we show that this modulation pattern can be quantitatively explained as due to non-symmetric but coherent Bose-Einstein condensation of magnons into the two energy minima. Our theory predicts a transition from a high-contrast symmetric phase to a low-contrast non-symmetric phase on varying the dd and HH, and a new type of collective oscillations.Comment: 6 figures. Accepted by Nature Scientific Report

    Thermodynamics of Two - Band Superconductors: The Case of MgB2_{2}

    Get PDF
    Thermodynamic properties of the multiband superconductor MgB2_{2} have often been described using a simple sum of the standard BCS expressions corresponding to σ\sigma- and π\pi-bands. Although, it is \textit{a priori} not clear if this approach is working always adequately, in particular in cases of strong interband scattering. Here we compare the often used approach of a sum of two independent bands using BCS-like α\alpha-model expressions for the specific heat, entropy and free energy to the solution of the full Eliashberg equations. The superconducting energy gaps, the free energy, the entropy and the heat capacity for varying interband scattering rates are calculated within the framework of two-band Eliashberg theory. We obtain good agreement between the phenomenological two-band α\alpha-model with the Eliashberg results, which delivers for the first time the theoretical verification to use the α\alpha-model as a useful tool for a reliable analysis of heat capacity data. For the thermodynamic potential and the entropy we demonstrate that only the sum over the contributions of the two bands has physical meaning.Comment: 27 pages, 10 figures, 1 table, submitted to Phys. Rev.

    Mixed Heisenberg Chains. I. The Ground State Problem

    Full text link
    We consider a mechanism for competing interactions in alternating Heisenberg spin chains due to the formation of local spin-singlet pairs. The competition of spin-1 and spin-0 states reveals hidden Ising symmetry of such alternating chains.Comment: 7 pages, RevTeX, 4 embedded eps figures, final versio

    Plasma Resonance in Layered Normal Metals and Superconductors

    Full text link
    A microscopic theory of the plasma resonance in layered metals is presented. It is shown that electron-impurity scattering can suppress the plasma resonance in the normal state and sharpen it in the superconducting state. Analytic properties of the conductivity for the electronic transport perpendicular to the layers are investigated. The dissipative part of the electromagnetic response in c-direction has been found to depend on frequency in a highly non-trivial manner. This sort of behavior cannot be incorporated in the widely used phenomenological Gorter-Kazimir model.Comment: 34 pages including 12 figures in uuencoded.file. A revised version. Several formulas and a number of misprints are corrected. A problem with printing of figures is fixe

    Current in narrow channels of anisotropic superconductors

    Get PDF
    We argue that in channels cut out of anisotropic single crystal superconductors and narrow on the scale of London penetration depth, the persistent current must cause the transverse phase difference provided the current does not point in any of the principal crystal directions. The difference is proportional to the current value and depends on the anisotropy parameter, on the current direction relative to the crystal, and on the transverse channel dimension. An experimental set up to measure the transverse phase is proposed.Comment: 3 pages, 1 figur

    Coulomb drag between quantum wires with different electron densities

    Full text link
    We study the way back-scattering electron--electron interaction generates Coulomb drag between quantum wires with different densities. At low temperature TT the system can undergo a commensurate-- incommensurate transition as the potential difference ∣W∣|W| between the two wires passes a critical value Δ\Delta, and this transition is reflected in a marked change in the dependence of drag resistivity on WW and TT. At high temperature a density difference between the wires suppresses Coulomb drag induced by back scattering, and we use the Tomonaga--Luttinger model to study this suppression in detail.Comment: 6 pages, 4 figure

    Vortex Plasma in a Superconducting Film with Magnetic Dots

    Get PDF
    We consider a superconducting film, placed upon a magnetic dot array. Magnetic moments of the dots are normal to the film and randomly oriented. We determine how the concentration of the vortices in the film depends on the magnetic moment of a dot at low temperatures. The concentration of the vortices, bound to the dots, is proportional to the density of the dots and depends on the magnetization of a dot in a step-like way. The concentration of the unbound vortices oscillates about a value, proportional to the magnetic moment of the dots. The period of the oscillations is equal to the width of a step in the concentration of the bound vortices.Comment: RevTeX, 4 page

    Frustrated spin model as a hard-sphere liquid

    Get PDF
    We show that one-dimensional topological objects (kinks) are natural degrees of freedom for an antiferromagnetic Ising model on a triangular lattice. Its ground states and the coexistence of spin ordering with an extensive zero-temperature entropy can be easily understood in terms of kinks forming a hard-sphere liquid. Using this picture we explain effects of quantum spin dynamics on that frustrated model, which we also study numerically.Comment: 5 pages, 3 figure
    • …
    corecore