3 research outputs found

    Comparative Study on Pantothenic Acid Separation by Reactive Extraction with Tri-n-octylamine and Di-(2-ethylhexyl) Phosphoric Acid

    Get PDF
    The mechanism of reactive extraction of pantothenic acid with tri-n-octylamine and di-(2-ethylhexyl) phosphoric acid was analysed for three solvents in the presence or absence of 1-octanol. In the absence of 1-octanol, the stoichiometric ratio between the solute and tri-n-octylamine was 1:1 for dichloromethane, 1:2 for butyl acetate, and 1:4 for n-heptane. In the presence of 1-octanol, the formation of aminic adducts was restricted, the stoichiometries for the interfacial reaction between the acid and tri-n-octylamine becoming 1:1 for dichloromethane and butyl acetate, 1:2 for n-heptane. A similar effect has been observed for extraction with di-(2-ethylhexyl) phosphoric acid, the structure of the interfacial compound being changed for n-heptane and butyl acetate from HAE2 in the absence of 1-octanol to HAE by addition of this alcohol. The highest extraction constants were obtained when extractant associates were formed. However, when the extraction mechanism was the same, the increase in organic phase polarity influenced positively the value of extraction constant

    SYNERGIC EXTRACTION OF PANTOTHENIC ACID WITH TWO DIFFERENT EXTRACTANTS

    No full text
    Abstract -The influences of extractants concentrations and solvent polarity on the efficiency of pantothenic acid separation by synergic extraction with tri-n-octylamine (TOA) and di(2-ethylhexyl) phosphoric acid (D2EHPA) mixture have been analyzed. The results indicated the formation of an interfacial compound which includes one molecule of pantothenic acid and one of D2EHPA, its hydrophobicity being increased by solvation with additional TOA molecules. For solvents with lower dielectric constants, n-heptane and n-butyl acetate, the number of amine molecules participating in the interfacial complex formation was controlled by solvent polarity and D2EHPA concentration, decreasing with the increase of these two parameters. For dichloromethane, the chemical structure of the extracted compound remained the same regardless of D2EHPA concentration. The most important synergic effect corresponded to the extractant mixture dissolved in nheptane, at low D2EHPA concentration in the organic phase (5 g/l)
    corecore