3 research outputs found

    Fermions Tunnelling from Black Holes

    Full text link
    We investigate the tunnelling of spin 1/2 particles through event horizons. We first apply the tunnelling method to Rindler spacetime and obtain the Unruh temperature. We then apply fermion tunnelling to a general non-rotating black hole metric and show that the Hawking temperature is recovered.Comment: 22 pages, v2: added references, v3: fixed minor typos, v4: added a new section applying fermion tunnelling method to Kruskal-Szekers coordinates, fixed minor typo, and added references, v5: modified introduction and conclusion, fixed typo

    G\"{o}del black hole, closed timelike horizon, and the study of particle emissions

    Full text link
    We show that a particle, with positive orbital angular momentum, following an outgoing null/timelike geodesic, shall never reach the closed timelike horizon (CTH) present in the (4+1)(4+1)-dimensional rotating G\"{o}del black hole space-time. Therefore a large part of this space-time remains inaccessible to a large class of geodesic observers, depending on the conserved quantities associated with them. We discuss how this fact and the existence of the closed timelike curves present in the asymptotic region make the quantum field theoretic study of the Hawking radiation, where the asymptotic observer states are a pre-requisite, unclear. However, the semiclassical approach provides an alternative to verify the Smarr formula derived recently for the rotating G\"{o}del black hole. We present a systematic analysis of particle emissions, specifically for scalars, charged Dirac spinors and vectors, from this black hole via the semiclassical complex path method.Comment: 13 pages; minor changes, references adde

    Hawking radiation of relativistic particles from black strings

    No full text
    corecore