3,147 research outputs found
Hunting for Isocurvature Modes in the CMB non-Gaussianities
We investigate new shapes of local primordial non-Gaussianities in the CMB.
Allowing for a primordial isocurvature mode along with the main adiabatic one,
the angular bispectrum is in general a superposition of six distinct shapes:
the usual adiabatic term, a purely isocurvature component and four additional
components that arise from correlations between the adiabatic and isocurvature
modes. We present a class of early Universe models in which various hierarchies
between these six components can be obtained, while satisfying the present
upper bound on the isocurvature fraction in the power spectrum. Remarkably,
even with this constraint, detectable non-Gaussianity could be produced by
isocurvature modes. We finally discuss the prospects of detecting these new
shapes with the Planck satellite.Comment: 9 pages, 2 figure
Scalar Kaluza-Klein modes in a multiply warped braneworld
The Kaluza-Klein (KK) modes of a massive scalar field on a 3-brane embedded
in six dimensional multiply warped spacetime are determined. Due to the
presence of warping along both the extra dimensions the KK mass spectrum splits
into two closely spaced branches which is a distinct feature of this model
compared to the five dimensional Randall-Sundrum model. This new cluster of the
KK mode spectrum is expected to have interesting phenomenological implications
for the upcoming collider experiments. Such a scenario may also be extended for
even larger number of orbifolded extra dimensions.Comment: 10 pages, Revte
Bulk gravitons from a cosmological brane
We investigate the emission of gravitons by a cosmological brane into an Anti
de Sitter five-dimensional bulk spacetime. We focus on the distribution of
gravitons in the bulk and the associated production of `dark radiation' in this
process. In order to evaluate precisely the amount of dark radiation in the
late low-energy regime, corresponding to standard cosmology, we study
numerically the emission, propagation and bouncing off the brane of bulk
gravitons.Comment: 27 pages, 5 figures, minor corrections. Final versio
From heaviness to lightness during inflation
We study the quantum fluctuations of scalar fields with a variable effective
mass during an inflationary phase. We consider the situation where the
effective mass depends on a background scalar field, which evolves during
inflation from being frozen into a damped oscillatory phase when the Hubble
parameter decreases below its mass. We find power spectra with suppressed
amplitude on large scales, similar to the standard massless spectrum on small
scales, and affected by modulations on intermediate scales. We stress the
analogies and differences with the parametric resonance in the preheating
scenario. We also discuss some potentially observable consequences when the
scalar field behaves like a curvaton.Comment: 23 pages; 8 figures; published versio
Bulk inflaton shadows of vacuum gravity
We introduce a -dimensional vacuum description of five-dimensional
bulk inflaton models with exponential potentials that makes analysis of
cosmological perturbations simple and transparent. We show that various
solutions, including the power-law inflation model recently discovered by
Koyama and Takahashi, are generated from known -dimensional vacuum
solutions of pure gravity. We derive master equations for all types of
perturbations, and each of them becomes a second order differential equation
for one master variable supplemented by simple boundary conditions on the
brane. One exception is the case for massive modes of scalar perturbations. In
this case, there are two independent degrees of freedom, and in general it is
difficult to disentangle them into two separate sectors.Comment: 22 pages, 4 figures, revtex; v2: references adde
Models for the Brane-Bulk Interaction: Toward Understanding Braneworld Cosmological Perturbation
Using some simple toy models, we explore the nature of the brane-bulk
interaction for cosmological models with a large extra dimension. We are in
particular interested in understanding the role of the bulk gravitons, which
from the point of view of an observer on the brane will appear to generate
dissipation and nonlocality, effects which cannot be incorporated into an
effective (3+1)-dimensional Lagrangian field theoretic description. We
explicitly work out the dynamics of several discrete systems consisting of a
finite number of degrees of freedom on the boundary coupled to a
(1+1)-dimensional field theory subject to a variety of wave equations. Systems
both with and without time translation invariance are considered and moving
boundaries are discussed as well. The models considered contain all the
qualitative feature of quantized linearized cosmological perturbations for a
Randall-Sundrum universe having an arbitrary expansion history, with the sole
exception of gravitational gauge invariance, which will be treated in a later
paper.Comment: 47 pages, RevTeX (or Latex, etc) with 5 eps figure
Viscous Brane Cosmology with a Brane-Bulk Energy Interchange Term
We assume a flat brane located at y=0, surrounded by an AdS space, and
consider the 5D Einstein equations when the energy flux component of the
energy-momentum tensor is related to the Hubble parameter through a constant Q.
We calculate the metric tensor, as well as the Hubble parameter on the brane,
when Q is small. As a special case, if the brane is tensionless, the influence
from Q on the Hubble parameter is absent. We also consider the emission of
gravitons from the brane, by means of the Boltzmann equation. Comparing the
energy conservation equation derived herefrom with the energy conservation
equation for a viscous fluid on the brane, we find that the entropy change for
the fluid in the emission process has to be negative. This peculiar effect is
related to the fluid on the brane being a non-closed thermodynamic system. The
negative entropy property for non-closed systems is encountered in other areas
in physics also, in particular, in connection with the Casimir effect at finite
temperature.Comment: 12 pages, latex, no figure
Cosmic Microwave Background Dipole induced by double inflation
The observed CMBR dipole is generally interpreted as the consequence of the
peculiar motion of the Sun with respect to the reference frame of the CMBR.
This article proposes an alternative interpretation in which the observed
dipole is the result of isocurvature perturbations on scales larger than the
present Hubble radius. These perturbations are produced in the simplest model
of double inflation, depending on three parameters. The observed dipole and
quadrupole can be explained in this model, while severely constraining its
parameters.Comment: Latex, 9 pages, no figure, to appear in Phys. Rev.
Bulk Gravitational Field and Cosmological Perturbations on the Brane
We investigate the effect of the bulk gravitational field on the cosmological
perturbations on a brane embedded in the 5D Anti-de Sitter (AdS) spacetime. The
effective 4D Einstein equations for the scalar cosmological perturbations on
the brane are obtained by solving the perturbations in the bulk. Then the
behaviour of the corrections induced by the bulk gravitational field to the
conventional 4D Einstein equation are determined. Two types of the corrections
are found. First we investigate the corrections which become significant at
scales below the AdS curvature scales and in the high energy universe with the
energy density larger than the tension of the brane. The evolution equation for
the perturbations on the brane is found and solved. Another type of the
corrections is induced on the brane if we consider the bulk perturbations which
do not contribute to the metric perturbations but do contribute to the matter
perturbations. At low energies, they have imaginary mass m^2=-(2/3) \k^2 in
the bulk where \k is the 3D comoving wave number of the perturbations. They
diverge at the horizon of the AdS spacetime. The induced density perturbations
behave as sound waves with sound velocity in the low energy
universe. At large scales, they are homogeneous perturbations that depend only
on time and decay like radiation. They can be identified as the perturbations
of the dark radiation. They produce isocurvature perturbations in the matter
dominated era. Their effects can be observed as the shifts of the location and
the height of the acoustic peak in the CMB spectrum.Comment: 35 pages, 1 figur
- âŠ