263 research outputs found

    Co-transport-induced instability of membrane voltage in tip-growing cells

    Full text link
    A salient feature of stationary patterns in tip-growing cells is the key role played by the symports and antiports, membrane proteins that translocate two ionic species at the same time. It is shown that these co-transporters destabilize generically the membrane voltage if the two translocated ions diffuse differently and carry a charge of opposite (same) sign for symports (antiports). Orders of magnitude obtained for the time and lengthscale are in agreement with experiments. A weakly nonlinear analysis characterizes the bifurcation

    Forces on Dust Grains Exposed to Anisotropic Interstellar Radiation Fields

    Get PDF
    Grains exposed to anisotropic radiation fields are subjected to forces due to the asymmetric photon-stimulated ejection of particles. These forces act in addition to the ``radiation pressure'' due to absorption and scattering. Here we model the forces due to photoelectron emission and the photodesorption of adatoms. The ``photoelectric'' force depends on the ambient conditions relevant to grain charging. We find that it is comparable to the radiation pressure when the grain potential is relatively low and the radiation spectrum is relatively hard. The calculation of the ``photodesorption'' force is highly uncertain, since the surface physics and chemsitry of grain materials are poorly understood at present. For our simple yet plausible model, the photodesorption force dominates the radiation pressure for grains with size >~0.1 micron exposed to starlight from OB stars. We find that the anisotropy of the interstellar radiation field is ~10% in the visible and ultraviolet. We estimate size-dependent drift speeds for grains in the cold and warm neutral media and find that micron-sized grains could potentially be moved across a diffuse cloud during its lifetime.Comment: LaTeX(41 pages, 19 figures), submitted to Ap

    Molecular hydrogen formation on grain surfaces

    Full text link
    We reconsider H2 formation on grain surfaces. We develop a rate equation model which takes into account the presence of both physisorbed and chemisorbed sites on the surface, including quantum mechanical tunnelling and thermal diffusion. In this study, we took into consideration the uncertainties on the characteristics of graphitic surfaces. We calculate the H2 formation efficiency with the Langmuir Hinshelwood and Eley Rideal mechanisms, and discuss the importance of these mechanisms for a wide range of grain and gas temperatures. We also develop a Monte Carlo simulation to calculate the H2 formation efficiency and compare the results to our rate equation models. Our results are the following: (1) Depending on the barrier against chemisorption, we predict the efficiency of H2 formation for a wide range of grain and gas temperatures. (2) The Eley-Rideal mechanism has an impact on the H2 formation efficiency at high grain and gas temperatures. (3) The fact that we consider chemisorption in our model makes the rate equation and Monte Carlo approaches equivalent.Comment: in "Light, dust and chemical evolution", Journal of Physics: Conference Serie

    Non-perturbative electron dynamics in crossed fields

    Full text link
    Intense AC electric fields on semiconductor structures have been studied in photon-assisted tunneling experiments with magnetic field applied either parallel (B_par) or perpendicular (B_per) to the interfaces. We examine here the electron dynamics in a double quantum well when intense AC electric fields F, and tilted magnetic fields are applied simultaneously. The problem is treated non-perturbatively by a time-dependent Hamiltonian in the effective mass approximation, and using a Floquet-Fourier formalism. For B_par=0, the quasi-energy spectra show two types of crossings: those related to different Landau levels, and those associated to dynamic localization (DL), where the electron is confined to one of the wells, despite the non-negligible tunneling between wells. B_par couples parallel and in-plane motions producing anti-crossings in the spectrum. However, since our approach is non-perturbative, we are able to explore the entire frequency range. For high frequencies, we reproduce the well known results of perfect DL given by zeroes of a Bessel function. We find also that the system exhibits DL at the same values of the field F, even as B_par non-zero, suggesting a hidden dynamical symmetry in the system which we identify with different parity operations. The return times for the electron at various values of field exhibit interesting and complex behavior which is also studied in detail. We find that smaller frequencies shifts the DL points to lower field F, and more importantly, yields poorer localization by the field. We analyze the explicit time evolution of the system, monitoring the elapsed time to return to a given well for each Landau level, and find non-monotonic behavior for decreasing frequencies.Comment: REVTEX4 + 11 eps figs, submitted to Phys. Rev.

    Resolving the temporal evolution of line broadening in single quantum emitters

    Get PDF
    Light emission from solid-state quantum emitters is inherently prone to environmental decoherence, which results in a line broadening and in the deterioration of photon indistinguishability. Here we employ photon correlation Fourier spectroscopy (PCFS) to study the temporal evolution of such a broadening in two prominent systems: GaAs and In(Ga)As quantum dots. Differently from previous experiments, the emitters are driven with short laser pulses as required for the generation of high-purity single photons, the time scales we probe range from a few nanoseconds to milliseconds and, simultaneously, the spectral resolution we achieve can be as small as ∼ 2µeV. We find pronounced differences in the temporal evolution of different optical transition lines, which we attribute to differences in their homogeneous linewidth and sensitivity to charge noise. We analyze the effect of irradiation with additional white light, which reduces blinking at the cost of enhanced charge noise. Due to its robustness against experimental imperfections and its high temporal resolution and bandwidth, PCFS outperforms established spectroscopy techniques, such as Michelson interferometry. We discuss its practical implementation and the possibility to use it to estimate the indistinguishability of consecutively emitted single photons for applications in quantum communication and photonic-based quantum information processing

    Primer to Voltage Imaging With ANNINE Dyes and Two-Photon Microscopy

    Get PDF
    ANNINE-6 and ANNINE-6plus are voltage-sensitive dyes that when combined with two-photon microscopy are ideal for recording of neuronal voltages in vivo, in both bulk loaded tissue and the dendrites of single neurons. Here, we describe in detail but for a broad audience the voltage sensing mechanism of fast voltage-sensitive dyes, with a focus on ANNINE dyes, and how voltage imaging can be optimized with one-photon and two-photon excitation. Under optimized imaging conditions the key strengths of ANNINE dyes are their high sensitivity (0.5%/mV), neglectable bleaching and phototoxicity, a linear response to membrane potential, and a temporal resolution which is faster than the optical imaging devices currently used in neurobiology (order of nanoseconds). ANNINE dyes in combination with two-photon microscopy allow depth-resolved voltage imaging in bulk loaded tissue to study average membrane voltage oscillations and sensory responses. Alternatively, if ANNINE-6plus is applied internally, supra and sub threshold voltage changes can be recorded from dendrites of single neurons in awake animals. Interestingly, in our experience ANNINE-6plus labeling is impressively stable in vivo, such that voltage imaging from single Purkinje neuron dendrites can be performed for 2 weeks after a single electroporation of the neuron. Finally, to maximize their potential for neuroscience studies, voltage imaging with ANNINE dyes and two-photon microscopy can be combined with electrophysiological recording, calcium imaging, and/or pharmacology, even in awake animals

    A Survey of Methods for Volumetric Scene Reconstruction from Photographs

    Get PDF
    Scene reconstruction, the task of generating a 3D model of a scene given multiple 2D photographs taken of the scene, is an old and difficult problem in computer vision. Since its introduction, scene reconstruction has found application in many fields, including robotics, virtual reality, and entertainment. Volumetric models are a natural choice for scene reconstruction. Three broad classes of volumetric reconstruction techniques have been developed based on geometric intersections, color consistency, and pair-wise matching. Some of these techniques have spawned a number of variations and undergone considerable refinement. This paper is a survey of techniques for volumetric scene reconstruction
    corecore