71,263 research outputs found

    The effect of magnetic islands on ITG turbulence driven transport

    Full text link
    In this work, we address the question of the influence of magnetic islands on the perpendicular transport due to steady-state ITG turbulence on the energy transport time scale. We demonstrate that turbulence can cross the separatrix and enhance the perpendicular transport across magnetic islands. As the perpendicular transport in the interior of the island sets the critical island size needed for growth of neoclassical tearing modes, this increased transport leads to a critical island size larger than that predicted from considering collisional conductivities, but smaller than that using anomalous effective conductivities. We find that on Bohm time scales, the turbulence is able to re-establish the temperature gradient across the island for islands widths w≲λturbw \lesssim \lambda_{turb}, the turbulence correlation length. The reduction in the island flattening is estimated by comparison with simulations retaining only the perpendicular temperature and no turbulence. At intermediate island widths, comparable to λturb\lambda_{turb}, turbulence is able to maintain finite temperature gradients across the island

    Knots with distinct primitive/primitive and primitive/Seifert representatives

    Full text link
    Berge introduced knots that are primitive/primitive with respect to the genus 2 Heegaard surface, FF, in S3S^3; surgery on such knots at the surface slope yields a lens space. Later Dean described a similar class of knots that are primitive/Seifert with respect to FF; surgery on these knots at the surface slope yields a Seifert fibered space. Here we construct a two-parameter family of knots that have distinct primitive/Seifert embeddings in FF with the same surface slope, as well as a family of torus knots that have a primitive/primitive representative and a primitive/Seifert representative with the same surface slope.Comment: 12 pages, 8 figures; 2 figures update

    Plasma turbulence simulations with X-points using the flux-coordinate independent approach

    Full text link
    In this work, the Flux-Coordinate Independent (FCI) approach to plasma turbulence simulations is formulated for the case of generic, static magnetic fields, including those possessing stochastic field lines. It is then demonstrated that FCI is applicable to nonlinear turbulent problems with and without X-point geometry. In particular, by means of simulations with the FENICIA code, it is shown that the standard features of ITG modes are recovered with reduced toroidal resolution. Finally, ITG turbulence under the influence of a static island is studied on the transport timescale with ITER-like parameters, showing the wide range of applicability of the method

    Instrumentation for Millimeter-wave Magnetoelectrodynamic Investigations of Low-Dimensional Conductors and Superconductors

    Full text link
    We describe instrumentation for conducting high sensitivity millimeter-wave cavity perturbation measurements over a broad frequency range (40-200 GHz) and in the presence of strong magnetic fields (up to 33 tesla). A Millimeter-wave Vector Network Analyzer (MVNA) acts as a continuously tunable microwave source and phase sensitive detector (8-350 GHz), enabling simultaneous measurements of the complex cavity parameters (resonance frequency and Q-value) at a rapid repetition rate (approx. 10 kHz). We discuss the principal of operation of the MVNA and the construction of a probe for coupling the MVNA to various cylindrical resonator configurations which can easily be inserted into a high field magnet cryostat. We also present several experimental results which demonstrate the potential of the instrument for studies of low-dimensional conducting systems.Comment: 20 pages including fig

    The lithium isotope ratio in the metal-poor halo star G271-162 from VLT/UVES observations

    Get PDF
    A high resolution (R = 110.000), very high S/N (>600) spectrum of the metal-poor turnoff star G271-162 has been obtained in connection with the commissioning of UVES at VLT/Kueyen. Using both 1D hydrostatic and 3D hydrodynamical model atmospheres, the lithium isotope ratio has been estimated from the LiI 670.8 nm line by means of spectral synthesis. The necessary stellar line broadening (1D: macroturbulence + rotation, 3D: rotation) has been determined from unblended KI, CaI and FeI lines. The 3D line profiles agree very well with the observed profiles, including the characteristic line asymmetries. Both the 1D and 3D analyses reveal a possible detection of 6Li in G271-162, 6Li/7Li = 0.02 +-0.01 (one sigma). It is discussed if the smaller amount of 6Li in G271-162 than in the similar halo star HD84937 could be due to differences in stellar mass and/or metallicity or whether it may reflect an intrinsic scatter of the Li isotope ratio in the ISM at a given metallicity.Comment: 5 pages with 6 figures. Accepted as a letter in A&

    Transportation of water-based slurry in an open furrow, launder or stream

    Get PDF
    The transport of large boulders in a furrow from a mining area to a nearby pond was considered. The furrow is filled with a mixture of water and soil particles flowing down to the pond at a very high velocity. Due to operating constraints, the slope of the furrow is reduced progressively. A formula is derived, relating the slope of the furrow and the composition of the fluid to the maximum size and shape of the transported boulders. The characteristics of the boulders carried all the way down to the pond may then be determined

    Weak measurement and control of entanglement generation

    Full text link
    In this paper we show how weak joint measurement and local feedback can be used to control entanglement generation between two qubits. To do this, we make use of a decoherence free subspace (DFS). Weak measurement and feedback can be used to drive the system into this subspace rapidly. Once within the subspace, feedback can generate entanglement rapidly, or turn off entanglement generation dynamically. We also consider, in the context of weak measurement, some of differences between purification and generating entanglement

    Spheromak formation and sustainment studies at the sustained spheromak physics experiment using high-speed imaging and magnetic diagnostics

    Get PDF
    A high-speed imaging system with shutter speeds as fast as 2 ns and double frame capability has been used to directly image the formation and evolution of the sustained spheromak physics experiment (SSPX) [E. B. Hooper et al., Nucl. Fusion 39, 863 (1999)]. Reproducible plasma features have been identified with this diagnostic and divided into three groups, according to the stage in the discharge at which they occur: (i) breakdown and ejection, (ii) sustainment, and (iii) decay. During the first stage, plasma descends into the flux conserver shortly after breakdown and a transient plasma column is formed. The column then rapidly bends and simultaneously becomes too dim to photograph a few microseconds after formation. It is conjectured here that this rapid bending precedes the transfer of toroidal to poloidal flux. During sustainment, a stable plasma column different from the transient one is observed. It has been possible to measure the column diameter and compare it to CORSICA [A. Tarditi et al., Contrib. Plasma Phys. 36, 132 (1996)], a magnetohydrodynamic equilibrium reconstruction code which showed good agreement with the measurements. Elongation and velocity measurements were made of cathode patterns also seen during this stage, possibly caused by pressure gradients or EĂ—B drifts. The patterns elongate in a toroidal-only direction which depends on the magnetic-field polarity. During the decay stage the column diameter expands as the current ramps down, until it eventually dissolves into filaments. With the use of magnetic probes inserted in the gun region, an X point which moved axially depending on current level and toroidal mode number was observed in all the stages of the SSPX plasma discharge

    Z -> b\bar{b} Versus Dynamical Electroweak Symmetry Breaking involving the Top Quark

    Full text link
    In models of dynamical electroweak symmetry breaking which sensitively involve the third generation, such as top quark condensation, the effects of the new dynamics can show up experimentally in Z->b\bar{b}. We compare the sensitivity of Z->b\bar{b} and top quark production at the Tevatron to models of the new physics. Z->b\bar{b} is a relatively more sensitive probe to new strongly coupled U(1) gauge bosons, while it is generally less sensitive a probe to new physics involving color octet gauge bosons as is top quark production itself. Nonetheless, to accomodate a significant excess in Z->b\bar{b} requires choosing model parameters that may be ruled out within run I(b) at the Tevatron.Comment: LaTex file, 19 pages + 2 Figs., Fermilab-Pub-94/231-
    • …
    corecore