205 research outputs found
Increased Avian Diversity Is Associated with Lower Incidence of Human West Nile Infection: Observation of the Dilution Effect
Recent infectious disease models illustrate a suite of mechanisms that can result in lower incidence of disease in areas of higher disease host diversity–the ‘dilution effect’. These models are particularly applicable to human zoonoses, which are infectious diseases of wildlife that spill over into human populations. As many recent emerging infectious diseases are zoonoses, the mechanisms that underlie the ‘dilution effect’ are potentially widely applicable and could contribute greatly to our understanding of a suite of diseases. The dilution effect has largely been observed in the context of Lyme disease and the predictions of the underlying models have rarely been examined for other infectious diseases on a broad geographic scale. Here, we explored whether the dilution effect can be observed in the relationship between the incidence of human West Nile virus (WNV) infection and bird (host) diversity in the eastern US. We constructed a novel geospatial contrasts analysis that compares the small differences in avian diversity of neighboring US counties (where one county reported human cases of WNV and the other reported no cases) with associated between-county differences in human disease. We also controlled for confounding factors of climate, regional variation in mosquito vector type, urbanization, and human socioeconomic factors that are all likely to affect human disease incidence. We found there is lower incidence of human WNV in eastern US counties that have greater avian (viral host) diversity. This pattern exists when examining diversity-disease relationships both before WNV reached the US (in 1998) and once the epidemic was underway (in 2002). The robust disease-diversity relationships confirm that the dilution effect can be observed in another emerging infectious disease and illustrate an important ecosystem service provided by biodiversity, further supporting the growing view that protecting biodiversity should be considered in public health and safety plans
New gene cassettes for trimethoprim resistance, dfr13, and Streptomycin-spectinomycin resistance, aadA4, inserted on a class 1 integron
In a previous survey of 357 trimethoprim-resistant isolates of aerobic gram-negative bacteria from commensal fecal flora, hybridization experiments showed that 25% (90 of 357) of the isolates failed to hybridize to specific oligonucleotide probes for dihydrofolate reductase types 1, 2b, 3, 5, 6, 7, 8, 9, 10, and 12. Subsequent cloning and sequencing of a plasmid-borne trimethoprim resistance gene from one of these isolates revealed a new dihydrofolate reductase gene, dfr13, which occurred as a cassette integrated in a site-specific manner in a class 1 integron. The gene product shared 84% amino acid identity with dfr12 and exhibited a trimethoprim inhibition profile similar to that of dfr12. Gene probing experiments with an oligonucleotide probe specific for this gene showed that 12.3% (44 of 357) of the isolates which did not hybridize to probes for other dihydrofolate reductases hybridized to this probe. Immediately downstream of dfr13, a new cassette, an aminoglycoside resistance gene of the class AADA [ANT(3")(9)-I], which encodes streptomycin-spectinomycin resistance, was identified. This gene shares 57% identity with the consensus aadA1 (ant(3")-Ia) and has been called aadA4 (ant(3")-Id). The 3′ end of the aadA4 cassette was truncated by IS26, which was contiguous with a truncated form of Tn3. On the same plasmid, pUK2381, a second copy of IS26 was associated with sul2, which suggests that both integrase and transposase activities have played major roles in the arrangement and dissemination of antibiotic resistance genes dfr13, aadA4, bla(TEM-1), and sul2
Recombinase technology: applications and possibilities
The use of recombinases for genomic engineering is no longer a new technology. In fact, this technology has entered its third decade since the initial discovery that recombinases function in heterologous systems (Sauer in Mol Cell Biol 7(6):2087–2096, 1987). The random insertion of a transgene into a plant genome by traditional methods generates unpredictable expression patterns. This feature of transgenesis makes screening for functional lines with predictable expression labor intensive and time consuming. Furthermore, an antibiotic resistance gene is often left in the final product and the potential escape of such resistance markers into the environment and their potential consumption raises consumer concern. The use of site-specific recombination technology in plant genome manipulation has been demonstrated to effectively resolve complex transgene insertions to single copy, remove unwanted DNA, and precisely insert DNA into known genomic target sites. Recombinases have also been demonstrated capable of site-specific recombination within non-nuclear targets, such as the plastid genome of tobacco. Here, we review multiple uses of site-specific recombination and their application toward plant genomic engineering. We also provide alternative strategies for the combined use of multiple site-specific recombinase systems for genome engineering to precisely insert transgenes into a pre-determined locus, and removal of unwanted selectable marker genes
Large Tandem, Higher Order Repeats and Regularly Dispersed Repeat Units Contribute Substantially to Divergence Between Human and Chimpanzee Y Chromosomes
Comparison of human and chimpanzee genomes has received much attention,
because of paramount role for understanding evolutionary step distinguishing us
from our closest living relative. In order to contribute to insight into Y
chromosome evolutionary history, we study and compare tandems, higher order
repeats (HORs), and regularly dispersed repeats in human and chimpanzee Y
chromosome contigs, using robust Global Repeat Map algorithm. We find a new
type of long-range acceleration, human-accelerated HOR regions. In peripheral
domains of 35mer human alphoid HORs, we find riddled features with ten
additional repeat monomers. In chimpanzee, we identify 30mer alphoid HOR. We
construct alphoid HOR schemes showing significant human-chimpanzee difference,
revealing rapid evolution after human-chimpanzee separation. We identify and
analyze over 20 large repeat units, most of them reported here for the first
time as: chimpanzee and human ~1.6 kb 3mer secondary repeat unit (SRU) and
~23.5 kb tertiary repeat unit (~0.55 kb primary repeat unit, PRU); human 10848,
15775, 20309, 60910, and 72140 bp PRUs; human 3mer SRU (~2.4 kb PRU); 715mer
and 1123mer SRUs (5mer PRU); chimpanzee 5096, 10762, 10853, 60523 bp PRUs; and
chimpanzee 64624 bp SRU (10853 bp PRU). We show that substantial
human-chimpanzee differences are concentrated in large repeat structures, at
the level of as much as ~70% divergence, sizably exceeding previous numerical
estimates for some selected noncoding sequences. Smeared over the whole
sequenced assembly (25 Mb) this gives ~14% human--chimpanzee divergence. This
is significantly higher estimate of divergence between human and chimpanzee
than previous estimates.Comment: 22 pages, 7 figures, 12 tables. Published in Journal of Molecular
Evolutio
Translating the genomics revolution: the need for an international gene therapy consortium for monogenic diseases
Letter to the Edito
- …