351 research outputs found

    Surface Induced Order in Liquid Metals and Binary Alloys

    Full text link
    Measurements of the surface x-ray scattering from several pure liquid metals (Hg, Ga, and In) and from three alloys (Ga-Bi, Bi-In, and K-Na) with different heteroatomic chemical interactions in the bulk phase are reviewed. Surface-induced layering is found for each elemental liquid metal. The surface structure of the K-Na alloy resembles that of an elemental liquid metal. Bi-In displays pair formation at the surface. Surface segregation and a wetting film are found for Ga-Bi.Comment: 10 pages, 3 fig, published in Journal of Physics: Condensed Matte

    Surface Crystallization in a Liquid AuSi Alloy

    Full text link
    X-ray measurements reveal a crystalline monolayer at the surface of the eutectic liquid Au_{82}Si_{18}, at temperatures above the alloy's melting point. Surface-induced atomic layering, the hallmark of liquid metals, is also found below the crystalline monolayer. The layering depth, however, is threefold greater than that of all liquid metals studied to date. The crystallinity of the surface monolayer is notable, considering that AuSi does not form stable bulk crystalline phases at any concentration and temperature and that no crystalline surface phase has been detected thus far in any pure liquid metal or nondilute alloy. These results are discussed in relation to recently suggested models of amorphous alloys.Comment: 12 pages, 3 figures, published in Science (2006

    Quantum codes give counterexamples to the unique pre-image conjecture of the N-representability problem

    Full text link
    It is well known that the ground state energy of many-particle Hamiltonians involving only 2-body interactions can be obtained using constrained optimizations over density matrices which arise from reducing an N-particle state. While determining which 2-particle density matrices are "N- representable" is a computationally hard problem, all known extreme N-representable 2-particle reduced density matrices arise from a unique N-particle pre-image, satisfying a conjecture established in 1972. We present explicit counterexamples to this conjecture through giving Hamiltonians with 2-body interactions which have degenerate ground states that cannot be distinguished by any 2-body operator. We relate the existence of such counterexamples to quantum error correction codes and topologically ordered spin systems.Comment: 4 pages, 1 figur
    • …
    corecore