615 research outputs found
Parameterizing by the Number of Numbers
The usefulness of parameterized algorithmics has often depended on what
Niedermeier has called, "the art of problem parameterization". In this paper we
introduce and explore a novel but general form of parameterization: the number
of numbers. Several classic numerical problems, such as Subset Sum, Partition,
3-Partition, Numerical 3-Dimensional Matching, and Numerical Matching with
Target Sums, have multisets of integers as input. We initiate the study of
parameterizing these problems by the number of distinct integers in the input.
We rely on an FPT result for ILPF to show that all the above-mentioned problems
are fixed-parameter tractable when parameterized in this way. In various
applied settings, problem inputs often consist in part of multisets of integers
or multisets of weighted objects (such as edges in a graph, or jobs to be
scheduled). Such number-of-numbers parameterized problems often reduce to
subproblems about transition systems of various kinds, parameterized by the
size of the system description. We consider several core problems of this kind
relevant to number-of-numbers parameterization. Our main hardness result
considers the problem: given a non-deterministic Mealy machine M (a finite
state automaton outputting a letter on each transition), an input word x, and a
census requirement c for the output word specifying how many times each letter
of the output alphabet should be written, decide whether there exists a
computation of M reading x that outputs a word y that meets the requirement c.
We show that this problem is hard for W[1]. If the question is whether there
exists an input word x such that a computation of M on x outputs a word that
meets c, the problem becomes fixed-parameter tractable
Band gap bowing in NixMg1-xO.
Epitaxial transparent oxide NixMg1-xO (0 ≤ x ≤ 1) thin films were grown on MgO(100) substrates by pulsed laser deposition. High-resolution synchrotron X-ray diffraction and high-resolution transmission electron microscopy analysis indicate that the thin films are compositionally and structurally homogeneous, forming a completely miscible solid solution. Nevertheless, the composition dependence of the NixMg1-xO optical band gap shows a strong non-parabolic bowing with a discontinuity at dilute NiO concentrations of x 0.074 and account for the anomalously large band gap narrowing in the NixMg1-xO solid solution system
On the (non-)existence of polynomial kernels for Pl-free edge modification problems
Given a graph G = (V,E) and an integer k, an edge modification problem for a
graph property P consists in deciding whether there exists a set of edges F of
size at most k such that the graph H = (V,E \vartriangle F) satisfies the
property P. In the P edge-completion problem, the set F of edges is constrained
to be disjoint from E; in the P edge-deletion problem, F is a subset of E; no
constraint is imposed on F in the P edge-edition problem. A number of
optimization problems can be expressed in terms of graph modification problems
which have been extensively studied in the context of parameterized complexity.
When parameterized by the size k of the edge set F, it has been proved that if
P is an hereditary property characterized by a finite set of forbidden induced
subgraphs, then the three P edge-modification problems are FPT. It was then
natural to ask whether these problems also admit a polynomial size kernel.
Using recent lower bound techniques, Kratsch and Wahlstrom answered this
question negatively. However, the problem remains open on many natural graph
classes characterized by forbidden induced subgraphs. Kratsch and Wahlstrom
asked whether the result holds when the forbidden subgraphs are paths or cycles
and pointed out that the problem is already open in the case of P4-free graphs
(i.e. cographs). This paper provides positive and negative results in that line
of research. We prove that parameterized cograph edge modification problems
have cubic vertex kernels whereas polynomial kernels are unlikely to exist for
the Pl-free and Cl-free edge-deletion problems for large enough l
Towards Work-Efficient Parallel Parameterized Algorithms
Parallel parameterized complexity theory studies how fixed-parameter
tractable (fpt) problems can be solved in parallel. Previous theoretical work
focused on parallel algorithms that are very fast in principle, but did not
take into account that when we only have a small number of processors (between
2 and, say, 1024), it is more important that the parallel algorithms are
work-efficient. In the present paper we investigate how work-efficient fpt
algorithms can be designed. We review standard methods from fpt theory, like
kernelization, search trees, and interleaving, and prove trade-offs for them
between work efficiency and runtime improvements. This results in a toolbox for
developing work-efficient parallel fpt algorithms.Comment: Prior full version of the paper that will appear in Proceedings of
the 13th International Conference and Workshops on Algorithms and Computation
(WALCOM 2019), February 27 - March 02, 2019, Guwahati, India. The final
authenticated version is available online at
https://doi.org/10.1007/978-3-030-10564-8_2
COMPRESSIVE BEHAVIOR OF CONCRETE COLUMNS AXIALLYLOADED BEFORE CFRP-WRAPPING. REMARKS BY EXPERIMENTALNUMERICAL INVESTIGATION
Strengthening of existing concrete columns with Fiber Reinforced Polymers (FRP) results generally in a satisfactory structural member improvement in terms of load and strain capacity. A reliable prediction of the capacity obtained by these reinforcement strategies requests a proper knowledge of the load-strain response of the confined concrete elements. However, so far, the available design methods and technical codes do not consider the effect of the possible presence of service loads at the moment of application of the reinforcement, and therefore, the compressive behavior of the concrete confined under preload is still unclear. In this paper, the effect of sustained loads on the compressive behavior of concrete columns CFRP-confined while preloaded is analyzed. Experimental tests were performed on circular concrete columns confined under low, medium and high preload levels before wrapping ad subsequently loaded until failure, observing the differences respect to the standard compressive stress-strain response of FRP-confined concrete. A finite element (FE) model is also developed by using ABAQUS software to simulate the physical scheme of the experimental tests. The accuracy of the model is validated through comparing with the experimental results
A New Lower Bound on the Maximum Number of Satisfied Clauses in Max-SAT and its Algorithmic Applications
A pair of unit clauses is called conflicting if it is of the form ,
. A CNF formula is unit-conflict free (UCF) if it contains no pair
of conflicting unit clauses. Lieberherr and Specker (J. ACM 28, 1981) showed
that for each UCF CNF formula with clauses we can simultaneously satisfy at
least \pp m clauses, where \pp =(\sqrt{5}-1)/2. We improve the
Lieberherr-Specker bound by showing that for each UCF CNF formula with
clauses we can find, in polynomial time, a subformula with clauses
such that we can simultaneously satisfy at least \pp m+(1-\pp)m'+(2-3\pp)n"/2
clauses (in ), where is the number of variables in which are not in
.
We consider two parameterized versions of MAX-SAT, where the parameter is the
number of satisfied clauses above the bounds and . The
former bound is tight for general formulas, and the later is tight for UCF
formulas. Mahajan and Raman (J. Algorithms 31, 1999) showed that every instance
of the first parameterized problem can be transformed, in polynomial time, into
an equivalent one with at most variables and clauses. We improve
this to variables and clauses. Mahajan and Raman
conjectured that the second parameterized problem is fixed-parameter tractable
(FPT). We show that the problem is indeed FPT by describing a polynomial-time
algorithm that transforms any problem instance into an equivalent one with at
most variables. Our results are obtained using our improvement
of the Lieberherr-Specker bound above
Cell wall characteristics during sexual reproduction of Mougeotia sp. (Zygnematophyceae) revealed by electron microscopy, glycan microarrays and RAMAN spectroscopy
Mougeotia spp. collected from field samples were investigated for their conjugation morphology by light-, fluorescence-, scanning- and transmission electron microscopy. During a scalarifom conjugation, the extragametangial zygospores were initially surrounded by a thin cell wall that developed into a multi-layered zygospore wall. Maturing zygospores turned dark brown and were filled with storage compounds such as lipids and starch. While M. parvula had a smooth surface, M. disjuncta had a punctated surface structure and a prominent suture. The zygospore wall consisted of a polysaccharide rich endospore, followed by a thin layer with a lipid-like appaerance, a massive electron dense mesospore and a very thin exospore composed of polysaccharides. Glycan microarray analysis of zygospores of different developmental stages revealed the occurrence of pectins and hemicelluloses, mostly composed of homogalacturonan (HG), xyloglucans, xylans, arabino-galactan proteins and extensins. In situ localization by the probe OG7-13AF 488 labelled HG in young zygospore walls, vegetative filaments and most prominently in conjugation tubes and cross walls. Raman imaging showed the distribution of proteins, lipids, carbohydrates and aromatic components of the mature zygospore with a spatial resolution of ~ 250 nm. The carbohydrate nature of the endo- and exospore was confirmed and in-between an enrichment of lipids and aromatic components, probably algaenan or a sporopollenin-like material. Taken together, these results indicate that during zygospore formation, reorganizations of the cell walls occured, leading to a resistant and protective structure
Improved FPT algorithms for weighted independent set in bull-free graphs
Very recently, Thomass\'e, Trotignon and Vuskovic [WG 2014] have given an FPT
algorithm for Weighted Independent Set in bull-free graphs parameterized by the
weight of the solution, running in time . In this article
we improve this running time to . As a byproduct, we also
improve the previous Turing-kernel for this problem from to .
Furthermore, for the subclass of bull-free graphs without holes of length at
most for , we speed up the running time to . As grows, this running time is
asymptotically tight in terms of , since we prove that for each integer , Weighted Independent Set cannot be solved in time in the class of -free graphs unless the
ETH fails.Comment: 15 page
Vertex Cover Kernelization Revisited: Upper and Lower Bounds for a Refined Parameter
An important result in the study of polynomial-time preprocessing shows that
there is an algorithm which given an instance (G,k) of Vertex Cover outputs an
equivalent instance (G',k') in polynomial time with the guarantee that G' has
at most 2k' vertices (and thus O((k')^2) edges) with k' <= k. Using the
terminology of parameterized complexity we say that k-Vertex Cover has a kernel
with 2k vertices. There is complexity-theoretic evidence that both 2k vertices
and Theta(k^2) edges are optimal for the kernel size. In this paper we consider
the Vertex Cover problem with a different parameter, the size fvs(G) of a
minimum feedback vertex set for G. This refined parameter is structurally
smaller than the parameter k associated to the vertex covering number vc(G)
since fvs(G) <= vc(G) and the difference can be arbitrarily large. We give a
kernel for Vertex Cover with a number of vertices that is cubic in fvs(G): an
instance (G,X,k) of Vertex Cover, where X is a feedback vertex set for G, can
be transformed in polynomial time into an equivalent instance (G',X',k') such
that |V(G')| <= 2k and |V(G')| <= O(|X'|^3). A similar result holds when the
feedback vertex set X is not given along with the input. In sharp contrast we
show that the Weighted Vertex Cover problem does not have a polynomial kernel
when parameterized by the cardinality of a given vertex cover of the graph
unless NP is in coNP/poly and the polynomial hierarchy collapses to the third
level.Comment: Published in "Theory of Computing Systems" as an Open Access
publicatio
Results and recommendations from an intercomparison of six Hygroscopicity-TDMA systems
The performance of six custom-built Hygrocopicity-Tandem Differential Mobility Analyser (H-TDMA) systems was investigated in the frame of an international calibration and intercomparison workshop held in Leipzig, February 2006. The goal of the workshop was to harmonise H-TDMA measurements and develop recommendations for atmospheric measurements and their data evaluation. The H-TDMA systems were compared in terms of the sizing of dry particles, relative humidity (RH) uncertainty, and consistency in determination of number fractions of different hygroscopic particle groups. The experiments were performed in an air-conditioned laboratory using ammonium sulphate particles or an external mixture of ammonium sulphate and soot particles. The sizing of dry particles of the six H-TDMA systems was within 0.2 to 4.2% of the selected particle diameter depending on investigated size and individual system. Measurements of ammonium sulphate aerosol found deviations equivalent to 4.5% RH from the set point of 90% RH compared to results from previous experiments in the literature. Evaluation of the number fraction of particles within the clearly separated growth factor modes of a laboratory generated externally mixed aerosol was done. The data from the H-TDMAs was analysed with a single fitting routine to investigate differences caused by the different data evaluation procedures used for each H-TDMA. The differences between the H-TDMAs were reduced from +12/-13% to +8/-6% when the same analysis routine was applied. We conclude that a common data evaluation procedure to determine number fractions of externally mixed aerosols will improve the comparability of H-TDMA measurements. It is recommended to ensure proper calibration of all flow, temperature and RH sensors in the systems. It is most important to thermally insulate the aerosol humidification unit and the second DMA and to monitor these temperatures to an accuracy of 0.2 degrees C. For the correct determination of external mixtures, it is necessary to take into account size-dependent losses due to diffusion in the plumbing between the DMAs and in the aerosol humidification unit.Peer reviewe
- …