116 research outputs found
Antibiofilm activity of LAE (ethyl lauroyl arginate) against food-borne fungi and its application in polystyrene surface coating
Several filamentous fungi species as Fusarium oxysporum or Cladosporium sp. can form biofilms by themselves or by participating in polymicrobial biofilms with bacteria. However, despite the high impact of biofilm on the food industry and the high efforts done to control biofilm produced by bacteria in the food area, there has been little study of strategies to control fungal biofilm in this area. In this study, the antibiofilm activity of the safe antimicrobial compound ethyl lauroyl arginate (LAE) was investigated against food spoilage fungi (Cladosporium cladosporioides, Aspergillus ochraceus, Penicillium italicum, Botrytis cynerea and Fusarium oxyspoum). Finally, the efficacy of a varnish-based coating incorporating LAE and coated onto polystyrene microtiter plates has been evaluated as a strategy to reduce fungal biofilm formation. The results of the 2,3-bis-(2-metoxi-4-nitro-5-sulfofenil)-2H-tetrazoilo-5-carboxanilida (XTT) assay, which measure the biofilm metabolic activity of moulds, demonstrated that LAE reduced significantly the formation of fungal biofilm at concentrations from 6 to 25 mg/L. This reduction was confirmed by the micrographs obtained by scanning electronic microscopy (SEM). In addition, LAE also showed antifungal activity against established biofilms. Particularly, it reduced their metabolic activity and viability at concentrations from 6 to 25 mg/L according to results obtained in the XTT assay and observations made by confocal laser scanning microscopy (CLSM). Finally, active coating incorporating from 2% of LAE proved to reduce significantly the biofilm formation in C. cladosporioides, B. cynerea and F. oxyspoum according to the results obtained in the XTT assay. However, the released studies indicated that the retention of LAE in the coating should be improved to prolong their activity
Polylactide-based films with the addition of poly(ethylene glycol) and extract of propolis—physico-chemical and storage properties
Polymeric films based on polylactide (PLA) with the addition of poly(ethylene glycol) (PEG) and a chloroformic extract of propolis were obtained. In the case of the studied films, polylactide (PLA) played the role of polymeric matrix and poly(ethylene glycol) was used as a plasticizer, while the extract of propolis was incorporated as a compound that could significantly affect the properties of the obtained materials, especially the water vapour permeation rate and the stability of the food products. Moreover, changes in structure, morphology, mechanical and storage properties as well as differences in colour, thickness and transparency after introducing propolis into the PLA–PEG system were determined. Based on the obtained results, it was established that the addition of the chloroformic extract of propolis significantly influences the most important properties taken into account during food packaging. It was also noticed that films with incorporated propolis were characterised by a significant improvement in the water vapour barrier property. Moreover, the obtained results prove that packaging containing a chloroformic propolis extract allow for the maintenance of the quality of the fruit stored for an extended period of time. To summarise, the application of a chloroformic propolis extract enables the formation of packaging materials that extend the shelf life of stored food products
Compounds from multilayer plastic bags cause reproductive failures in artificial insemination
High levels of reproductive failure were detected in some Spanish sow farms in the Spring of 2010. Regular returns to estrus and variable reductions in litter size were observed. The problem started suddenly and did not appear to be related to the quality of the ejaculates, disease, alterations of body condition or any other apparent reasons. Subsequent studies determined that the problem was the origin of the plastic bags used for semen storage. Chemical analysis of the suspicious bags identified unexpected compounds such as BADGE, a cyclic lactone and an unknown phthalate that leached into the semen at concentrations of 0.2 to 2.5 mg/L. Spermatozoa preserved in these bags passed all of the routine quality control tests, and no differences were observed between storage in the control and suspicious bags (p . 0.05). In vitro fecundation tests and endocrine profiler panel analysis (EPP) did not show any alterations, whereas the in vivo tests confirmed the described failure. This is the first described relationship between reproductive failure and toxic compounds released from plastic bags
The Secret Life of Collagen: Temporal Changes in Nanoscale Fibrillar Pre-Strain and Molecular Organization during Physiological Loading of Cartilage
Articular
cartilage is a natural biomaterial whose structure at
the micro- and nanoscale is critical for healthy joint function and
where degeneration is associated with widespread disorders such as
osteoarthritis. At the nanoscale, cartilage mechanical functionality
is dependent on the collagen fibrils and hydrated proteoglycans that
form the extracellular matrix. The dynamic response of these ultrastructural
building blocks at the nanoscale, however, remains unclear. Here we
measure time-resolved changes in collagen fibril strain, using small-angle
X-ray diffraction during compression of bovine and human cartilage
explants. We demonstrate the existence of a collagen fibril tensile
pre-strain, estimated from the D-period at approximately 1–2%,
due to osmotic swelling pressure from the proteoglycan. We reveal
a rapid reduction and recovery of this pre-strain which occurs during
stress relaxation, approximately 60 s after the onset of peak load.
Furthermore, we show that this reduction in pre-strain is linked to
disordering in the intrafibrillar molecular packing, alongside changes
in the axial overlapping of tropocollagen molecules within the fibril.
Tissue degradation in the form of selective proteoglycan removal disrupts
both the collagen fibril pre-strain and the transient response during
stress relaxation. This study bridges a fundamental gap in the knowledge
describing time-dependent changes in collagen pre-strain and molecular
organization that occur during physiological loading of articular
cartilage. The ultrastructural details of this transient response
are likely to transform our understanding of the role of collagen
fibril nanomechanics in the biomechanics of cartilage and other hydrated
soft tissues
A vision for safer food contact materials: Public health concerns as drivers for improved testing
Food contact materials (FCMs) and food contact articles are ubiquitous in today's globalized food system. Chemicals migrate from FCMs into foodstuffs, so called food contact chemicals (FCCs), but current regulatory requirements do not sufficiently protect public health from hazardous FCCs because only individual substances used to make FCMs are tested and mostly only for genotoxicity while endocrine disruption and other hazard properties are disregarded. Indeed, FCMs are a known source of a wide range of hazardous chemicals, and they likely contribute to highly prevalent non-communicable diseases. FCMs can also include non-intentionally added substances (NIAS), which often are unknown and therefore not subject to risk assessment. To address these important shortcomings, we outline how the safety of FCMs may be improved by (1) testing the overall migrate, including (unknown) NIAS, of finished food contact articles, and (2) expanding toxicological testing beyond genotoxicity to multiple endpoints associated with non-communicable diseases relevant to human health. To identify mechanistic endpoints for testing, we group chronic health outcomes associated with chemical exposure into Six Clusters of Disease (SCOD) and we propose that finished food contact articles should be tested for their impacts on these SCOD. Research should focus on developing robust, relevant, and sensitive in-vitro assays based on mechanistic information linked to the SCOD, e.g., through Adverse Outcome Pathways (AOPs) or Key Characteristics of Toxicants. Implementing this vision will improve prevention of chronic diseases that are associated with hazardous chemical exposures, including from FCMs
Elucidating the significance of copper and nitrate speciation in Cu-SSZ-13 for N2O formation during NH3-SCR
Unwanted N2O formation is a problem that has been noted in selective catalytic reduction (SCR) where copper zeolite catalysts are utilized. With its immense global warming potential and long-term stability, elevated atmospheric N2O has already been identified as a future challenge in the war on climate change. This paper explores the phenomenon of N2O formation during NH3-SCR over Cu-SSZ-13 catalysts, which are currently commercialized in automotive emissions control systems, and proposes a link between N2O production and the local copper environment found within the zeolite. To achieve this, a comparison is made between two Cu-SSZ-13 samples with different copper co-ordinations produced via different synthesis methods. A combination of synchrotron X-ray absorption near-edge spectroscopy, UV–vis, Raman, and density functional theory (DFT) is used to characterize the nature of copper species present within each sample. Synchrotron IR microspectroscopy is then used to compare their behavior during SCR under operando conditions and monitor the evolution of nitrate intermediates, which, along with further DFT, informs a mechanistic model for nitrate decomposition pathways. Increased N2O production is seen in the Cu-SSZ-13 sample postulated to contain a linear Cu species, providing an important correlation between the catalytic behavior of Cu-zeolites and the nature of their metal ion loading and speciation
Sample preparation procedure for the determination of polycyclic aromatic hydrocarbons in petroleum vacuum residue and bitumen
This paper describes a novel method of sample preparation for the determination of trace concentrations of polycyclic aromatic hydrocarbons (PAHs) in high-boiling petroleum products. Limits of quantitation of the investigated PAHs in materials of this type range from tens of nanograms per kilogram to <20 μg/kg. The studies revealed that in order to separate most of interferences from the analytes without a significant loss of PAHs, it is necessary to use size exclusion chromatography as the first step of sample preparation, followed by adsorption using normal-phase liquid chromatography. The use of orthogonal separation procedure described in the paper allows the isolation of only a group of unsubstituted and substituted aromatic hydrocarbons with a specific range of molar mass. The lower the required limit of quantitation of PAHs, the larger is the scale of preparative liquid chromatography in both steps of sample preparation needed. The use of internal standard allows quantitative results to be corrected for the degree of recovery of PAHs during the sample preparation step. Final determination can be carried out using HPLC-FLD, GC-MS, or HPLC-UV–VIS/DAD. The last technique provides a degree of identification through the acquired UV–VIS spectra
- …