504 research outputs found
Sampling and Reconstruction of Signals in a Reproducing Kernel Subspace of
In this paper, we consider sampling and reconstruction of signals in a
reproducing kernel subspace of L^p(\Rd), 1\le p\le \infty, associated with an
idempotent integral operator whose kernel has certain off-diagonal decay and
regularity. The space of -integrable non-uniform splines and the
shift-invariant spaces generated by finitely many localized functions are our
model examples of such reproducing kernel subspaces of L^p(\Rd). We show that
a signal in such reproducing kernel subspaces can be reconstructed in a stable
way from its samples taken on a relatively-separated set with sufficiently
small gap. We also study the exponential convergence, consistency, and the
asymptotic pointwise error estimate of the iterative approximation-projection
algorithm and the iterative frame algorithm for reconstructing a signal in
those reproducing kernel spaces from its samples with sufficiently small gap
-dimensional charged Anti-de-Sitter black holes in gravity
We present a -dimensional charged Anti-de-Sitter black hole solutions in
gravity, where and . These solutions are
characterized by flat or cylindrical horizons. The interesting feature of these
solutions is the existence of inseparable electric monopole and quadrupole
terms in the potential which share related momenta, in contrast with most of
the known charged black hole solutions in General Relativity and its
extensions. Furthermore, these solutions have curvature singularities which are
milder than those of the known charged black hole solutions in General
Relativity and Teleparallel Gravity. This feature can be shown by calculating
some invariants of curvature and torsion tensors. Furthermore, we calculate the
total energy of these black holes using the energy-momentum tensor. Finally, we
show that these charged black hole solutions violate the first law of
thermodynamics in agreement with previous results.Comment: 11 Pages, will appear in JHE
Teleparallel Killing Vectors of the Einstein Universe
In this short paper we establish the definition of the Lie derivative of a
second rank tensor in the context of teleparallel theory of gravity and also
extend it for a general tensor of rank . This definition is then used to
find Killing vectors of the Einstein universe. It turns out that Killing
vectors of the Einstein universe in the teleparallel theory are the same as in
General Relativity.Comment: 9 pages, accepted for publication in Mod. Phys. Lett.
Rotating charged AdS solutions in quadratic gravity
We present a class of asymptotically anti-de Sitter charged rotating black
hole solutions in gravity in -dimensions, where . These solutions are nontrivial extensions of the solutions presented in
\cite{Lemos:1994xp} and \cite{Awad:2002cz} in the context of general
relativity. They are characterized by cylindrical, toroidal or flat horizons,
depending on global identifications. The static charged black hole
configurations obtained in \cite{Awad:2017tyz} are recovered as special cases
when the rotation parameters vanish. Similar to \cite{Awad:2017tyz} the static
black holes solutions have two different electric multipole terms in the
potential with related moments. Furthermore, these solutions have milder
singularities compared to their general relativity counterparts. Using the
conserved charges expressions obtained in \cite{Ulhoa:2013gca} and
\cite{Maluf:2008ug} we calculate the total mass/energy and the angular momentum
of these solutions.Comment: 11 pages, Version accepted in EPJ
Energy Contents of Gravitational Waves in Teleparallel Gravity
The conserved quantities, that are, gravitational energy-momentum and its
relevant quantities are investigated for cylindrical and spherical
gravitational waves in the framework of teleparallel equivalent of General
Relativity using the Hamiltonian approach. For both cylindrical and spherical
gravitational waves, we obtain definite energy and constant momentum. The
constant momentum shows consistency with the results available in General
Relativity and teleparallel gravity. The angular momentum for cylindrical and
spherical gravitational waves also turn out to be constant. Further, we
evaluate their gravitational energy-momentum fluxes and gravitational pressure.Comment: 14 pages, accepted for publication in Mod. Phys. Lett.
- …