203 research outputs found
Decreases in blood perfusion of the anterior cingulate gyri in Anorexia Nervosa Restricters assessed by SPECT image analysis
BACKGROUND: It is possible that psychopathological differences exist between the restricting and bulimic forms of anorexia nervosa. We investigated localized differences of brain blood flow of anorexia nervosa patients using SPECT image analysis with statistic parametric mapping (SPM) in an attempt to link brain blood flow patterns to neurophysiologic characteristics. METHODS: The subjects enrolled in this study included the following three groups: pure restrictor anorexics (AN-R), anorexic bulimics (AN-BP), and healthy volunteers (HV). All images were transformed into the standard anatomical space of the stereotactic brain atlas, then smoothed. After statistical analysis of each brain image, the relationships among images were evaluated. RESULTS: SPM analysis of the SPECT images revealed that the blood flow of frontal area mainly containing bilateral anterior cingulate gyri (ACC) was significantly decreased in the AN-R group compared to the AN-BP and HV groups. CONCLUSIONS: These findings suggest that some localized functions ofthe ACCare possibly relevant to the psychopathological aspects of AN-R
Detection of sentinel and non-sentinel lymph node micrometastases by complete serial sectioning and immunohistochemical analysis for gastric cancer
<p>Abstract</p> <p>Background</p> <p>We investigated the presence and distribution of the sentinel and the non-sentinel node micrometastases using complete serial sectioning and immunohistochemical staining (IHC), to inspect whether lymph node micrometastases spread to the sentinel lymph nodes first.</p> <p>Methods</p> <p>A total of 35 patients, who underwent gastrectomy with a sentinel lymph node biopsy for gastric cancer, were enrolled in this study. Total of 1028 lymph nodes of 35 patients having gastric cancer without metastasis of lymph node by permanent section with hematoxylin and eosin staining (H&E) were selected. There were 252 sentinel nodes and the other 776 were non-sentinel nodes. All nodes were sectioned serially and stained alternately with H&E and IHC. Lymph node micrometastases was defined as proving to be positive first either the IHC or the complete serial sectioning.</p> <p>Results</p> <p>Micrometastases were detected in 4 (11%) of the 35 patients, 6 (0.58%) of 1028 nodes. Of these 4 patients, 3 had micrometastases exclusively in sentinel nodes, and the other had micrometastasis in both sentinel and non-sentinel nodes. There was no patient who had the micrometasitases only in non-sentinel nodes.</p> <p>Conclusion</p> <p>These results support the concept that lymph node micrometastasis of gastric cancer spreads first to sentinel nodes.</p
Kv7 Channels Can Function without Constitutive Calmodulin Tethering
M-channels are voltage-gated potassium channels composed of Kv7.2-7.5 subunits that serve as important regulators of neuronal excitability. Calmodulin binding is required for Kv7 channel function and mutations in Kv7.2 that disrupt calmodulin binding cause Benign Familial Neonatal Convulsions (BFNC), a dominantly inherited human epilepsy. On the basis that Kv7.2 mutants deficient in calmodulin binding are not functional, calmodulin has been defined as an auxiliary subunit of Kv7 channels. However, we have identified a presumably phosphomimetic mutation S511D that permits calmodulin-independent function. Thus, our data reveal that constitutive tethering of calmodulin is not required for Kv7 channel function
Hippocampal Deletion of BDNF Gene Attenuates Gamma Oscillations in Area CA1 by Up-Regulating 5-HT3 Receptor
Background: Pyramidal neurons in the hippocampal area CA3 express high levels of BDNF, but how this BDNF contributes to oscillatory properties of hippocampus is unknown. Methodology/Principal Findings: Here we examined carbachol-induced gamma oscillations in hippocampal slices lacking BDNF gene in the area CA3. The power of oscillations was reduced in the hippocampal area CA1, which coincided with increases in the expression and activity of 5-HT3 receptor. Pharmacological block of this receptor partially restored power of gamma oscillations in slices from KO mice, but had no effect in slices from WT mice. Conclusion/Significance: These data suggest that BDNF facilitates gamma oscillations in the hippocampus by attenuating signaling through 5-HT3 receptor. Thus, BDNF modulates hippocampal oscillations through serotonergic system
Following specific podocyte injury captopril protects against progressive long term renal damage
Background: Angiotensin converting enzyme inhibitors (ACEi) reduce proteinuria and preserve kidney function in proteinuric renal diseases. Their nephroprotective effect exceeds that attributable to lowering of blood pressure alone. This study examines the potential of ACEi to protect from progression of injury after a highly specific injury to podocytes in a mouse model. Methods: We created transgenic (Podo-DTR) mice in which graded specific podocyte injury could be induced by a single injection of diphtheria toxin. Transgenic and wild-type mice were given the ACEi captopril in drinking water, or water alone, commencing 24h after toxin injection. Kidneys were examined histologically at 8 weeks and injury assessed by observers blinded to experimental group. Results: After toxin injection, Podo-DTR mice developed acute proteinuria, and at higher doses transient renal impairment, which subsided within 3 weeks to be followed by a slow glomerular scarring process. Captopril treatment in Podo-DTR line 57 after toxin injection at 5ng/g body weight reduced proteinuria and ameliorated glomerular scarring, matrix accumulation and glomerulosclerosis almost to baseline (toxin: 17%; toxin + ACEi 10%, p<0.04; control 7% glomerular scarring). Podocyte counts were reduced after toxin treatment and showed no recovery irrespective of captopril treatment (7.1 and 7.3 podocytes per glomerular cross section in water and captopril-treated animals compared with 8.2 of wild-type controls, p<0.05). Conclusions: Observations in Podo-DTR mice support the hypothesis that continuing podocyte dysfunction is a key abnormality in proteinuric disease. Our model is ideal for studying strategies to protect the kidney from progressive injury following podocyte depletion. Demonstrable protective effects from captopril occur, despite indiscernible preservation or restoration of podocyte counts, at least after this degree of relatively mild injury
Discovery of a Novel Activator of KCNQ1-KCNE1 K+ Channel Complexes
KCNQ1 voltage-gated K+ channels (Kv7.1) associate with the family of five KCNE peptides to form complexes with diverse gating properties and pharmacological sensitivities. The varied gating properties of the different KCNQ1-KCNE complexes enables the same K+ channel to function in both excitable and non excitable tissues. Small molecule activators would be valuable tools for dissecting the gating mechanisms of KCNQ1-KCNE complexes; however, there are very few known activators of KCNQ1 channels and most are ineffective on the physiologically relevant KCNQ1-KCNE complexes. Here we show that a simple boronic acid, phenylboronic acid (PBA), activates KCNQ1/KCNE1 complexes co-expressed in Xenopus oocytes at millimolar concentrations. PBA shifts the voltage sensitivity of KCNQ1 channel complexes to favor the open state at negative potentials. Analysis of different-sized charge carriers revealed that PBA also targets the permeation pathway of KCNQ1 channels. Activation by the boronic acid moiety has some specificity for the Kv7 family members (KCNQ1, KCNQ2/3, and KCNQ4) since PBA does not activate Shaker or hERG channels. Furthermore, the commercial availability of numerous PBA derivatives provides a large class of compounds to investigate the gating mechanisms of KCNQ1-KCNE complexes
Molecular genetic analysis of podocyte genes in focal segmental glomerulosclerosis—a review
This review deals with podocyte proteins that play a significant role in the structure and function of the glomerular filter. Genetic linkage studies has identified several genes involved in the development of nephrotic syndrome and contributed to the understanding of the pathophysiology of glomerular proteinuria and/or focal segmental glomerulosclerosis. Here, we describe already well-characterized genetic diseases due to mutations in nephrin, podocin, CD2AP, alpha-actinin-4, WT1, and laminin β2 chain, as well as more recently identified genetic abnormalities in TRPC6, phospholipase C epsilon, and the proteins encoded by the mitochondrial genome. In addition, the role of the proteins which have shown to be important for the structure and functions by gene knockout studies in mice, are also discussed. Furthermore, some rare syndromes with glomerular involvement, in which molecular defects have been recently identified, are briefly described. In summary, this review updates the current knowledge of genetic causes of congenital and childhood nephrotic syndrome and provides new insights into mechanisms of glomerular dysfunction
- …