4 research outputs found

    Finite volume modeling of the solidification of an axial steel cast impeller

    Get PDF
    In the foundry industry, obtaining the solidification contours in cast geometries are extremely important to know the last location(s) to solidify in order to define the correct feeding path and the number of risers. This paper presents three-dimensional simulation of transient conduction heat transfer within an axial impeller, made of AISI 1016 steel, poured and solidified in chemically bonded mold and core medium, by using FVM technique and ANSYS CFX. Specific heat, density and thermal conductivity of AISI 1016 steel, mold and Core materials are considered as functions of temperatures. In this transient thermal analysis, the convection heat transfer phenomenon is also considered at the outer surfaces of the mold. In order to shorten the run-time, the nonlinear transient analysis has been made for 600/3600 segment of the impeller, core and mold. The solidification contours of the impeller as well as isothermal lines in core and mold have been obtained in 3-D. The cooling curves of diff erent points are also shown in the result section

    Effects of chills on the solidification pattern of an axial steel cast impeller

    Get PDF
    This paper presents three-dimensional simulation of transient conduction heat transfer within an axial impeller (AISI 1016), two different sizes of chills (AISI 1016), core (green sand) and mold (green sand) by using Ansys CFX. Specific heat, density and thermal conductivity of AISI 1016 steel, mold and Core materials are considered as functions of temperature
    corecore