238 research outputs found

    Primordial Hypermagnetic Knots

    Get PDF
    Topologically non-trivial configurations of the hypermagnetic flux lines lead to the formation of hypermagnetic knots (HK) whose decay might seed the Baryon Asymmetry of the Universe (BAU).HK can be dynamically generated provided a topologically trivial (i.e. stochastic) distribution of flux lines is already present in the symmetric phase of the electroweak (EW) theory. In spite of the mechanism generating the HK, their typical size must exceed the diffusivity length scale. In the minimal standard model (MSM) (but not necessarily in its supersymmetric extension) HK are washed out. A classical hypermagnetic background in the symmetric phase of the EW theory can produce interesting amounts of gravitational radiation.Comment: 4 pages in Revtex style, 2 figure

    Strongly nonlinear dynamics of electrolytes in large ac voltages

    Get PDF
    We study the response of a model micro-electrochemical cell to a large ac voltage of frequency comparable to the inverse cell relaxation time. To bring out the basic physics, we consider the simplest possible model of a symmetric binary electrolyte confined between parallel-plate blocking electrodes, ignoring any transverse instability or fluid flow. We analyze the resulting one-dimensional problem by matched asymptotic expansions in the limit of thin double layers and extend previous work into the strongly nonlinear regime, which is characterized by two novel features - significant salt depletion in the electrolyte near the electrodes and, at very large voltage, the breakdown of the quasi-equilibrium structure of the double layers. The former leads to the prediction of "ac capacitive desalination", since there is a time-averaged transfer of salt from the bulk to the double layers, via oscillating diffusion layers. The latter is associated with transient diffusion limitation, which drives the formation and collapse of space-charge layers, even in the absence of any net Faradaic current through the cell. We also predict that steric effects of finite ion sizes (going beyond dilute solution theory) act to suppress the strongly nonlinear regime in the limit of concentrated electrolytes, ionic liquids and molten salts. Beyond the model problem, our reduced equations for thin double layers, based on uniformly valid matched asymptotic expansions, provide a useful mathematical framework to describe additional nonlinear responses to large ac voltages, such as Faradaic reactions, electro-osmotic instabilities, and induced-charge electrokinetic phenomena.Comment: 30 pages, 17 eps-figures, RevTe

    Crystalline ground state in chiral Gross-Neveu and Cooper pair models at finite densities

    Get PDF
    We study the possibility of spatially non-uniform ground state in (1+1)-dimensional models with quartic fermi interactions at finite fermion densities by introducing chemical potential \mu. We examine the chiral Gross-Neveu model and the Cooper pair model as toy models of the chiral symmetry breaking and the difermion pair condensates which are presumed to exist in QCD. We confirm in the chiral Gross-Neveu model that the ground state has a crystalline structure in which the chiral condensate oscillates in space with wave number 2\mu. Whereas in the Cooper pair model we find that the vacuum structure is spatially uniform. Some discussions are given to explain this difference.Comment: 18 pages, REVTeX, 3 eps figure

    Phases of QCD at High Baryon Density

    Get PDF
    We review recent work on the phase structure of QCD at very high baryon density. We introduce the phenomenon of color superconductivity and discuss how the quark masses and chemical potentials determine the structure of the superfluid quark phase. We comment on the possibility of kaon condensation at very high baryon density and study the competition between superfluid, density wave, and chiral crystal phases at intermediate density.Comment: 15 pages. To appear in the proceedings of the ECT Workshop on Neutron Star Interiors, Trento, Italy, June 200

    Spontaneous symmetry breaking in strong-coupling lattice QCD at high density

    Full text link
    We determine the patterns of spontaneous symmetry breaking in strong-coupling lattice QCD in a fixed background baryon density. We employ a next-nearest-neighbor fermion formulation that possesses the SU(N_f)xSU(N_f) chiral symmetry of the continuum theory. We find that the global symmetry of the ground state varies with N_f and with the background baryon density. In all cases the condensate breaks the discrete rotational symmetry of the lattice as well as part of the chiral symmetry group.Comment: 10 pages, RevTeX 4; added discussion of accidental degeneracy of vacuum after Eq. (35

    Superdense Matter

    Get PDF
    We review recent work on the phase structure of QCD at very high baryon density. We introduce the phenomenon of color superconductivity and discuss the use of weak coupling methods. We study the phase structure as a function of the number of flavors and their masses. We also introduce effective theories that describe low energy excitations at high baryon density. Finally, we study the possibility of kaon condensation at very large baryon density.Comment: 13 pages, talk at ICPAQGP, Jaipur, India, Nov. 26-30, 2001; to appear in the proceeding

    Local and Global Casimir Energies: Divergences, Renormalization, and the Coupling to Gravity

    Full text link
    From the beginning of the subject, calculations of quantum vacuum energies or Casimir energies have been plagued with two types of divergences: The total energy, which may be thought of as some sort of regularization of the zero-point energy, 12ω\sum\frac12\hbar\omega, seems manifestly divergent. And local energy densities, obtained from the vacuum expectation value of the energy-momentum tensor, T00\langle T_{00}\rangle, typically diverge near boundaries. The energy of interaction between distinct rigid bodies of whatever type is finite, corresponding to observable forces and torques between the bodies, which can be unambiguously calculated. The self-energy of a body is less well-defined, and suffers divergences which may or may not be removable. Some examples where a unique total self-stress may be evaluated include the perfectly conducting spherical shell first considered by Boyer, a perfectly conducting cylindrical shell, and dilute dielectric balls and cylinders. In these cases the finite part is unique, yet there are divergent contributions which may be subsumed in some sort of renormalization of physical parameters. The divergences that occur in the local energy-momentum tensor near surfaces are distinct from the divergences in the total energy, which are often associated with energy located exactly on the surfaces. However, the local energy-momentum tensor couples to gravity, so what is the significance of infinite quantities here? For the classic situation of parallel plates there are indications that the divergences in the local energy density are consistent with divergences in Einstein's equations; correspondingly, it has been shown that divergences in the total Casimir energy serve to precisely renormalize the masses of the plates, in accordance with the equivalence principle.Comment: 53 pages, 1 figure, invited review paper to Lecture Notes in Physics volume in Casimir physics edited by Diego Dalvit, Peter Milonni, David Roberts, and Felipe da Ros

    Nonlinear electrochemical relaxation around conductors

    Full text link
    We analyze the simplest problem of electrochemical relaxation in more than one dimension - the response of an uncharged, ideally polarizable metallic sphere (or cylinder) in a symmetric, binary electrolyte to a uniform electric field. In order to go beyond the circuit approximation for thin double layers, our analysis is based on the Poisson-Nernst-Planck (PNP) equations of dilute solution theory. Unlike most previous studies, however, we focus on the nonlinear regime, where the applied voltage across the conductor is larger than the thermal voltage. In such strong electric fields, the classical model predicts that the double layer adsorbs enough ions to produce bulk concentration gradients and surface conduction. Our analysis begins with a general derivation of surface conservation laws in the thin double-layer limit, which provide effective boundary conditions on the quasi-neutral bulk. We solve the resulting nonlinear partial differential equations numerically for strong fields and also perform a time-dependent asymptotic analysis for weaker fields, where bulk diffusion and surface conduction arise as first-order corrections. We also derive various dimensionless parameters comparing surface to bulk transport processes, which generalize the Bikerman-Dukhin number. Our results have basic relevance for double-layer charging dynamics and nonlinear electrokinetics in the ubiquitous PNP approximation.Comment: 25 pages, 17 figures, 4 table

    On the Applicability of Weak-Coupling Results in High Density QCD

    Get PDF
    Quark matter at asymptotically high baryon chemical potential is in a color superconducting state characterized by a gap Delta. We demonstrate that although present weak-coupling calculations of Delta are formally correct for mu -> Infinity, the contributions which have to this point been neglected are large enough that present results can only be trusted for mu >> mu_c ~ 10^8 MeV. We make this argument by using the gauge dependence of the present calculation as a diagnostic tool. It is known that the present calculation yields a gauge invariant result for mu -> Infinity; we show, however, that the gauge dependence of this result only begins to decrease for mu > mu_c, and conclude that the result can certainly not be trusted for mu < mu_c. In an appendix, we set up the calculation of the influence of the Meissner effect on the magnitude of the gap. This contribution to Delta is, however, much smaller than the neglected contributions whose absence we detect via the resulting gauge dependence.Comment: 21 pages, 3 figures, uses LaTeX2e and ReVTeX, updated figures, made minor text change

    Color Superconductivity in Compact Stars

    Get PDF
    After a brief review of the phenomena expected in cold dense quark matter, color superconductivity and color-flavor locking, we sketch some implications of recent developments in our understanding of cold dense quark matter for the physics of compact stars. We give a more detailed summary of our recent work on crystalline color superconductivity and the consequent realization that (some) pulsar glitches may originate in quark matter.Comment: 19 pages. 2 figures. To appear in the proceedings of the ECT Workshop on Neutron Star Interiors, Trento, Italy, June 2000. Shorter versions contributed to the proceedings of Strong and Electroweak Matter 2000, Marseille, France, June 2000 and to the proceedings of Strangeness 2000, Berkeley, CA, July 2000. KR was the speaker at all three meeting
    corecore