25,892 research outputs found

    Constraining ΩM\Omega_M and Dark Energy with Gamma-Ray Bursts

    Full text link
    An Eγ,jetEp1.5E_{\gamma,{\rm jet}}\propto {E'_p}^{1.5} relationship with a small scatter for current γ\gamma-ray burst (GRB) data was recently reported, where Eγ,jetE_{\gamma,{\rm jet}} is the beaming-corrected γ\gamma-ray energy and EpE'_p is the νFν\nu F_\nu peak energy in the local observer frame. By considering this relationship for a sample of 12 GRBs with known redshift, peak energy, and break time of afterglow light curves, we constrain the mass density of the universe and the nature of dark energy. We find that the mass density ΩM=0.35±0.150.15\Omega_M=0.35\pm^{0.15}_{0.15} (at the 1σ1\sigma confident level) for a flat universe with a cosmological constant, and the ww parameter of an assumed static dark-energy equation of state w=0.84±0.830.57w=-0.84\pm^{0.57}_{0.83} (1σ1\sigma). Our results are consistent with those from type Ia supernovae. A larger sample established by the upcoming {\em Swift} satellite is expected to provide further constraints.Comment: 8 pages including 4 figures, to appear in ApJ Letters, typos correcte

    Near-Optimal Distributed Approximation of Minimum-Weight Connected Dominating Set

    Full text link
    This paper presents a near-optimal distributed approximation algorithm for the minimum-weight connected dominating set (MCDS) problem. The presented algorithm finds an O(logn)O(\log n) approximation in O~(D+n)\tilde{O}(D+\sqrt{n}) rounds, where DD is the network diameter and nn is the number of nodes. MCDS is a classical NP-hard problem and the achieved approximation factor O(logn)O(\log n) is known to be optimal up to a constant factor, unless P=NP. Furthermore, the O~(D+n)\tilde{O}(D+\sqrt{n}) round complexity is known to be optimal modulo logarithmic factors (for any approximation), following [Das Sarma et al.---STOC'11].Comment: An extended abstract version of this result appears in the proceedings of 41st International Colloquium on Automata, Languages, and Programming (ICALP 2014

    Gamma-Ray Burst Afterglows with Energy Injection: Homogeneous Versus Wind External Media

    Get PDF
    Assuming an adiabatic evolution of a gamma-ray burst (GRB) fireball interacting with an external medium, we calculate the hydrodynamics of the fireball with energy injection from a strongly magnetic millisecond pulsar through magnetic dipole radiation, and obtain the light curve of the optical afterglow from the fireball by synchrotron radiation. Results are given both for a homogeneous external medium and for a wind ejected by GRB progenitor. Our calculations are also available in both ultra-relativistic and non-relativistic phases. Furthermore, the observed R-band light curve of GRB{000301C} can be well fitted in our model, which might provide a probe of the properties of GRB progenitors.Comment: revised version for publication in Chin. Phys. Let

    Echo Emission From Dust Scattering and X-Ray Afterglows of Gamma-Ray Bursts

    Full text link
    We investigate the effect of X-ray echo emission in gamma-ray bursts (GRBs). We find that the echo emission can provide an alternative way of understanding X-ray shallow decays and jet breaks. In particular, a shallow decay followed by a "normal" decay and a further rapid decay of X-ray afterglows can be together explained as being due to the echo from prompt X-ray emission scattered by dust grains in a massive wind bubble around a GRB progenitor. We also introduce an extra temporal break in the X-ray echo emission. By fitting the afterglow light curves, we can measure the locations of the massive wind bubbles, which will bring us closer to finding the mass loss rate, wind velocity, and the age of the progenitors prior to the GRB explosions.Comment: 25 pages, 3 figures, 2 tables. Accepted for publication in Ap

    Semileptonic B decays into excited charmed mesons from QCD sum rules

    Get PDF
    Exclusive semileptonic BB decays into excited charmed mesons are studied with QCD sum rules in the leading order of heavy quark effective theory. Two universal Isgur-Wise functions \tau and \zeta for semileptonic B decays into four lowest lying excited DD mesons (D1D_1, D2D_2^*, D0D'_0, and D1D'_1) are determined. The decay rates and branching ratios for these processes are calculated.Comment: RevTeX, 17 pages including 2 figure

    An exactly solvable phase transition model: generalized statistics and generalized Bose-Einstein condensation

    Full text link
    In this paper, we present an exactly solvable phase transition model in which the phase transition is purely statistically derived. The phase transition in this model is a generalized Bose-Einstein condensation. The exact expression of the thermodynamic quantity which can simultaneously describe both gas phase and condensed phase is solved with the help of the homogeneous Riemann-Hilbert problem, so one can judge whether there exists a phase transition and determine the phase transition point mathematically rigorously. A generalized statistics in which the maximum occupation numbers of different quantum states can take on different values is introduced, as a generalization of Bose-Einstein and Fermi-Dirac statistics.Comment: 17 pages, 2 figure
    corecore