253 research outputs found

    Spin relaxation in a GaAs quantum dot embedded inside a suspended phonon cavity

    Full text link
    The phonon-induced spin relaxation in a two-dimensional quantum dot embedded inside a semiconductor slab is investigated theoretically. An enhanced relaxation rate is found due to the phonon van Hove singularities. Oppositely, a vanishing deformation potential may also result in a suppression of the spin relaxation rate. For larger quantum dots, the interplay between the spin orbit interaction and Zeeman levels causes the suppression of the relaxation at several points. Furthermore, a crossover from confined to bulk-like systems is obtained by varying the width of the slab.Comment: 5 pages, 4 figures, to apper in Phys. Rev. B (2006

    Suppression of the D'yakonov-Perel' spin relaxation mechanism for all spin components in [111] zincblende quantum wells

    Full text link
    We apply the D'yakonov-Perel' (DP) formalism to [111]-grown zincblende quantum wells (QWs) to compute the spin lifetimes of electrons in the two-dimensional electron gas. We account for both bulk and structural inversion asymmetry (Rashba) effects. We see that, under certain conditions, the spin splitting vanishes to first order in k, which effectively suppresses the DP spin relaxation mechanism for all spin components. We predict extended spin lifetimes as a result, giving rise to the possibility of enhanced spin storage. We also study [110]-grown QWs, where the effect of structural inversion asymmetry is to augment the spin relaxation rate of the component perpendicular to the well. We derive analytical expressions for the spin lifetime tensor and its proper axes, and see that they are dependent on the relative magnitude of the BIA- and SIA-induced splittings.Comment: v1: 5 pages, 2 figures, submitted to PRL v2: added 1 figure and supporting content, PRB forma

    Spin-orbit Hanle effect in high-mobility quantum wells

    Full text link
    We study the depolarization of optically oriented electrons in quantum wells subjected to an in-plane magnetic field and show that the Hanle curve drastically depends on the carrier mobility. In low-mobility structures, the Hanle curve is described by a Lorentzian with the width determined by the effective g-factor and the spin lifetime. In contrast, the magnetic field dependence of spin polarization in high-mobility quantum wells is nonmonotonic: The spin polarization rises with the magnetic field induction at small fields, reaches maximum and then decreases. We show that the position of the Hanle curve maximum can be used to directly measure the spin-orbit Rashba/Dresselhaus magnetic field.Comment: 4 pages, 3 figure

    Asymptotically self-similar propagation of the spherical ionization waves

    Full text link
    It is shown that a new type of the self-similar spherical ionization waves may exist in gases. All spatial scales and the propagation velocity of such waves increase exponentially in time. Conditions for existence of these waves are established, their structure is described and approximate analytical relationships between the principal parameters are obtained. It is notable that spherical ionization waves can serve as the simplest, but structurally complete and physically transparent model of streamer in homogeneous electric field.Comment: Corrected typos, the more precise formulas are obtaine

    Spin dynamics of two-dimensional electrons with Rashba spin-orbit coupling and electron-electron interactions

    Full text link
    We study the spin dynamics of two dimensional electron gases (2DEGs) with Rashba spin-orbit coupling by taking account of electron-electron interactions. The diffusion equations for charge and spin densities are derived by making use of the path-integral approach and the quasiclassical Green's function. Analyzing the effect of the interactions, we show that the spin-relaxation time can be enhanced by the electron-electron interaction in the ballistic regime.Comment: accepted for publication in Phys. Rev.

    Semiclassical theory of weak antilocalization and spin relaxation in ballistic quantum dots

    Get PDF
    We develop a semiclassical theory for spin-dependent quantum transport in ballistic quantum dots. The theory is based on the semiclassical Landauer formula, that we generalize to include spin-orbit and Zeeman interaction. Within this approach, the orbital degrees of freedom are treated semiclassically, while the spin dynamics is computed quantum mechanically. Employing this method, we calculate the quantum correction to the conductance in quantum dots with Rashba and Dresselhaus spin-orbit interaction. We find a strong sensitivity of the quantum correction to the underlying classical dynamics of the system. In particular, a suppression of weak antilocalization in integrable systems is observed. These results are attributed to the qualitatively different types of spin relaxation in integrable and chaotic quantum cavities.Comment: 20 page

    Spin relaxation dynamics of quasiclassical electrons in ballistic quantum dots with strong spin-orbit coupling

    Full text link
    We performed path integral simulations of spin evolution controlled by the Rashba spin-orbit interaction in the semiclassical regime for chaotic and regular quantum dots. The spin polarization dynamics have been found to be strikingly different from the D'yakonov-Perel' (DP) spin relaxation in bulk systems. Also an important distinction have been found between long time spin evolutions in classically chaotic and regular systems. In the former case the spin polarization relaxes to zero within relaxation time much larger than the DP relaxation, while in the latter case it evolves to a time independent residual value. The quantum mechanical analysis of the spin evolution based on the exact solution of the Schroedinger equation with Rashba SOI has confirmed the results of the classical simulations for the circular dot, which is expected to be valid in general regular systems. In contrast, the spin relaxation down to zero in chaotic dots contradicts to what have to be expected from quantum mechanics. This signals on importance at long time of the mesoscopic echo effect missed in the semiclassical simulations.Comment: 14 pages, 9 figure

    Spin-polarized electron transport in ferromagnet/semiconductor heterostructures: Unification of ballistic and diffusive transport

    Full text link
    A theory of spin-polarized electron transport in ferromagnet/semiconductor heterostructures, based on a unified semiclassical description of ballistic and diffusive transport in semiconductor structures, is developed. The aim is to provide a framework for studying the interplay of spin relaxation and transport mechanism in spintronic devices. A key element of the unified description of transport inside a (nondegenerate) semiconductor is the thermoballistic current consisting of electrons which move ballistically in the electric field arising from internal and external electrostatic potentials, and which are thermalized at randomly distributed equilibration points. The ballistic component in the unified description gives rise to discontinuities in the chemical potential at the boundaries of the semiconductor, which are related to the Sharvin interface conductance. By allowing spin relaxation to occur during the ballistic motion between the equilibration points, a thermoballistic spin-polarized current and density are constructed in terms of a spin transport function. An integral equation for this function is derived for arbitrary values of the momentum and spin relaxation lengths. For field-driven transport in a homogeneous semiconductor, the integral equation can be converted into a second-order differential equation that generalizes the standard spin drift-diffusion equation. The spin polarization in ferromagnet/semiconductor heterostructures is obtained by invoking continuity of the current spin polarization and matching the spin-resolved chemical potentials on the ferromagnet sides of the interfaces. Allowance is made for spin-selective interface resistances. Examples are considered which illustrate the effects of transport mechanism and electric field.Comment: 23 pages, 8 figures, REVTEX 4; minor corrections introduced; to appear in Phys. Rev.

    Kinetic investigation on extrinsic spin Hall effect induced by skew scattering

    Full text link
    The kinetics of the extrinsic spin Hall conductivity induced by the skew scattering is performed from the fully microscopic kinetic spin Bloch equation approach in (001)(001) GaAs symmetric quantum well. In the steady state, the extrinsic spin Hall current/conductivity vanishes for the linear-k\mathbf k dependent spin-orbit coupling and is very small for the cubic-k\mathbf k dependent spin-orbit coupling. The spin precession induced by the Dresselhaus/Rashba spin-orbit coupling plays a very important role in the vanishment of the extrinsic spin Hall conductivity in the steady state. An in-plane spin polarization is induced by the skew scattering, with the help of the spin-orbit coupling. This spin polarization is very different from the current-induced spin polarization.Comment: 5 pages, 2 figures, to be published in JPC

    Electronic spin transport in graphene field effect transistors

    Get PDF
    Spin transport experiments in graphene, a single layer of carbon atoms, indicate spin relaxation times that are significantly shorter than the theoretical predictions. We investigate experimentally whether these short spin relaxation times are due to extrinsic factors, such as spin relaxation caused by low impedance contacts, enhanced spin flip processes at the device edges or the presence of an aluminium oxide layer on top of graphene in some samples. Lateral spin valve devices using a field effect transistor geometry allowed for the investigation of the spin relaxation as a function of the charge density, going continuously from metallic hole to electron conduction (charge densities of n∼1012n\sim 10^{12}cm−2^{-2}) via the Dirac charge neutrality point (n∼0n \sim 0). The results are quantitatively described by a one dimensional spin diffusion model where the spin relaxation via the contacts is taken into account. Spin valve experiments for various injector/detector separations and spin precession experiments reveal that the longitudinal (T1_1) and the transversal (T2_2) relaxation times are similar. The anisotropy of the spin relaxation times τ∥\tau_\parallel and τ⊥\tau_\perp, when the spins are injected parallel or perpendicular to the graphene plane, indicates that the effective spin orbit fields do not lie exclusively in the two dimensional graphene plane. Furthermore, the proportionality between the spin relaxation time and the momentum relaxation time indicates that the spin relaxation mechanism is of the Elliott-Yafet type. For carrier mobilities of 2-5×103\times 10^3 cm2^/Vs and for graphene flakes of 0.1-2 μ\mum in width, we found spin relaxation times of the order of 50-200 ps, times which appear not to be determined by the extrinsic factors mentioned above.Comment: 11 pages, 13 figure
    • …
    corecore