497 research outputs found
Coupled-channels effects in elastic scattering and near-barrier fusion induced by weakly bound nuclei and exotic halo nuclei
The influence on fusion of coupling to the breakup process is investigated
for reactions where at least one of the colliding nuclei has a sufficiently low
binding energy for breakup to become an important process. Elastic scattering,
excitation functions for sub-and near-barrier fusion cross sections, and
breakup yields are analyzed for Li+Co. Continuum-Discretized
Coupled-Channels (CDCC) calculations describe well the data at and above the
barrier. Elastic scattering with Li (as compared to Li) indicates
the significant role of breakup for weakly bound projectiles. A study of
He induced fusion reactions with a three-body CDCC method for the
He halo nucleus is presented. The relative importance of breakup and
bound-state structure effects on total fusion is discussed.Comment: 29 pages, 9 figure
Observational physics of mirror world
The existence of the whole world of shadow particles, interacting with each other and having no mutual interactions with ordinary particles except gravity is a specific feature of modern superstring models, being considered as models of the theory of everything. The presence of shadow particles is the necessary condition in the superstring models, providing compensation of the asymmetry of left and right chirality states of ordinary particles. If compactification of additional dimensions retains the symmetry of left and right states, shadow world turns to be the mirror one, with particles and fields having properties strictly symmetrical to the ones of corresponding ordinary particles and fields. Owing to the strict symmetry of physical laws for ordinary and mirror particles, the analysis of cosmological evolution of mirror matter provides rather definite conclusions on possible effects of mirror particles in the universe. A general qualitative discussion of possible astronomical impact of mirror matter is given, in order to make as wide as possible astronomical observational searches for the effects of mirror world, being the unique way to test the existence of mirror partners of ordinary particles in the Nature
Optical "fingerprints" of dielectric resonators
The complete picture of the optical properties of resonant structures, along
with the frequency, quality factor, and line shape in the scattering spectra,
is determined by the electromagnetic field distribution patterns, which are a
kind of "fingerprint" of each resonant eigenmode. In this paper, we
simultaneously analyze the changes in the spectra and the transformation of the
field pattern during the topological transitions from a thin disk to a ring
with a gradually increasing thickness and further to a split ring. In addition,
we demonstrate characteristic optical fingerprints for well-known interference
effects such as bound states in the continuum and Fano resonances.Comment: 11 pages, 5 figure
Population synthesis of old neutron stars in the Galaxy
The paucity of old isolated accreting neutron stars in ROSAT observations is
used to derive a lower limit on the mean velocity of neutron stars at birth.
The secular evolution of the population is simulated following the paths of a
statistical sample of stars for different values of the initial kick velocity,
drawn from an isotropic Gaussian distribution with mean velocity . The spin-down, induced by dipole losses and the
interaction with the ambient medium, is tracked together with the dynamical
evolution in the Galactic potential, allowing for the determination of the
fraction of stars which are, at present, in each of the four possible stages:
Ejector, Propeller, Accretor, and Georotator. Taking from the ROSAT All Sky
Survey an upper limit of accreting neutron stars within pc
from the Sun, we infer a lower bound for the mean kick velocity, \ga
200-300 . The same conclusion is reached for both a constant
( G) and a magnetic field decaying exponentially with a
timescale yr. Present results, moreover, constrain the fraction of
low velocity stars, which could have escaped pulsar statistics, to \la 1%.Comment: 8 pages, 4 PostScript figures, to appear in the proceedings of IAU
Symposium 19
Infrared afterglow of GRB041219 as a result of reradiation on dust in a circumstellar cloud
Observations of gamma ray bursts (GRB) afterglows in different spectral bands
provide a most valuable information about their nature, as well as about
properties of surrounding medium. Powerful infrared afterglow was observed from
the strong GRB041219. Here we explain the observed IR afterglow in the model of
a dust reradiation of the main GRB signal in the envelope surrounding the GRB
source. In this model we do not expect appearance of the prompt optical
emission which should be absorbed in the dust envelope. We estimate the
collimation angle of the gamma ray emission, and obtain restrictions on the
redshift (distance to GRB source), by fitting the model parameters to the
observational data.Comment: 6 pages, 2 figures, Submited to Astrofizik
The effect of diet on the structure of gut bacterial community of sympatric pair of whitefishes (Coregonus lavaretus): one story more
In the Coregonus lavaretus complex may be found lacustrine sympatric pairs, which serves as an intriguing model for studying different aspects of fish evolutionary biology. One such sympatric whitefish pair inhabits Teletskoye Lake (West Siberia, Russia) and includes a “large” form (Coregonus lavaretus pidschian (Gmelin, 1789)) and a “small” form (C. l. pravdinellus (Dulkeit, 1949)). C. l. pravdinellus has a narrow trophic specialization and feeds on zooplankton, whereas the diet of C. l. pidschian is based on benthic prey. In the present study we aimed to address the question of how the gut microbial community reflects the divergence in diet of a sympatric pair of whitefish. Studied samples included the mucosa and content were collected for cardiac and pyloric stomach, anterior, middle, and posterior intestine, but only mucosa was collected for the pyloric caeca. In addition, water, sediment, macrophyte (environmental microbiota) and invertebrate (microbiota of prey) samples were collected in the same location. The V3–V4 region of the 16S rRNA genes was chosen for microbiome analysis and the software PICRUSt used to estimate the difference functional roles of the microbiota. The number of OTUs and Chao1 index in mucosa and content of cardiac and pyloric stomach were significantly different between whitefish. Significant differences were observed between whitefish for content from different parts of the intestine in terms of OTU number and Chao1 indices, whereas for mucosa from the same parts of intestine these differences were absent. No significant differences were found for diversity estimates of mucosa and content of different parts of the gut (there were a few exceptions) between whitefish. The form of whitefish and the segment of the digestive system were factors with a significant determinative effect on the structure of the microbiota from gut mucosa and content. The most dominant phyla in mucosa and content of cardiac and pyloric stomach was Proteobacteria (57.0–84.0%) for both whitefish. Throughout the intestine of C. l. pidschian the dominant phyla in mucosa were Proteobacteria (38.8%) and Firmicutes (15.6%), whereas for C. l. pravdinellus–Tenericutes (49.6%) and Proteobacteria (28.1%). For both forms, the phylum Spirochaetes was found in a significant amount (20.0–25.0%) in the mucosa of the posterior intestine. While for the content obtained from anterior, middle and posterior intestines, the dominant bacterial phyla were the same as those described for mucosa from the same parts of the intestine for both whitefish. The bacterial community of the prey and environment was significantly different from bacterial communities found for all parts of the gut mucosa for both whitefish, with the exception of the mucosa of the cardiac stomach. According to PICRUSt the highest level of differences between whitefish at the L3 level were found for the intestinal mucosa (75.3%), whereas the lowest one was registered for stomach content (38.8%).info:eu-repo/semantics/publishedVersio
Thermally stable composite system Al2O3-Ce 0.75Zr0.25O2 for automotive three-way catalysts
Present-day three-way catalysts operate in contact with exhaust gases whose temperature is as high as >1000 C, so the problem of developing thermally stable catalytic compositions is still topical. A series of Al2O 3-Ce0.75Zr0.25O2 composites containing 0, 10, 25, and 50 wt % Al2O3 has been synthesized by direct precipitation. The as-prepared composites and those calcined in air at 1000 and 1100 C have been characterized by BET, X-ray diffraction, transmission electron microscopy, and temperature-programmed reduction methods. The composites aged at 1050 C in a 2% O2 + 10% H2O + 88% N2 atmosphere have been used to prepare monolith catalysts, and the oxygen storage capacity (OSC) of the latter has been measured using a gas analysis setup. As the proportion of Al2O 3 in the composite is raised, the mixing uniformity and degree of dispersion of Ce x Zr1-x O2-δ particles increase, their chemical composition becomes homogeneous, and the amount of cerium involved in oxidation and reduction increases. The composite containing 50 wt % Al2O3 is a mixture of Ce x Zr 1-x O2-δ and Al2O3 crystallites, whose size is practically unaffected by calcination. The (Pt/Al2O3 + Al2O3-Ce 0.75Zr0.25O2) based on this composite has the highest OSC and is the most active. For this reason, full-scale testing of this catalyst is recommended. © 2013 Pleiades Publishing, Ltd
Xmm-Newton Observations of the Diffuse X-ray Background
We analyzed two XMM-Newton observations in the direction of the high density,
high latitude, neutral hydrogen cloud MBM20 and of a nearby low density region
that we called the Eridanus hole. The cloud MBM20 is at a distance evaluated
between 100 and 200 pc from the Sun and its density is sufficiently high to
shield about 75% of the foreground emission in the 3/4 keV energy band.The
combination of the two observations makes possible an evaluation of the OVII
and OVIII emission both for the foreground component due to the Local
Bubble,and the background one, due primary to the galactic halo.The two
observations are in good agreement with each other and with ROSAT observations
of the same part of the sky and the OVII and OVIII fluxes are OVII=3.89+/-0.56
photons cm^-2 s^-1 sr^-1, OVIII=0.68+/-0.24 photons cm^-2 s^-1 sr^-1 for MBM20
and OVII=7.26+/-0.34 photons cm^-2 s^-1 sr^-1,OVIII=1.63+/-0.17 photons cm^-2
s^-1 sr^-1 for the Eridanus hole. The spectra are in agreement with a simple
three component model, one unabsorbed and one absorbed plasma component, and a
power law, without evidence for any strong contamination from ion exchange in
the solar system. Assuming that the two plasma components are in thermal
equilibrium we obtain a temperature of 0.096 keV for the foreground component
and 0.197 keV for the background one. Assuming the foreground component is due
solely to Local Bubble emission we obtain a lower and upper limit for the
plasma density of 0.0079 cm^-3 and 0.0095 cm^-3 and limits of 16,200 cm^-3 K
and 19,500 cm^-3 K for the plasma pressure, in good agreement with theoretical
predictions. Similarly, assuming that the absorbed plasma component is due to
Galactic halo emission, we obtain a plasma density ranging from 0.0009 cm^-3 to
0.0016 cm^-3, and a pressure ranging from 3.0*10^3 to 6.7*10^3 cm^-3 K.Comment: 31 pages, 5 figures, Accepted for publication in Ap
Determining the Parameters of Massive Protostellar Clouds via Radiative Transfer Modeling
A one-dimensional method for reconstructing the structure of prestellar and
protostellar clouds is presented. The method is based on radiative transfer
computations and a comparison of theoretical and observed intensity
distributions at both millimeter and infrared wavelengths. The radiative
transfer of dust emission is modeled for specified parameters of the density
distribution, central star, and external background, and the theoretical
distribution of the dust temperature inside the cloud is determined. The
intensity distributions at millimeter and IR wavelengths are computed and
quantitatively compared with observational data. The best-fit model parameters
are determined using a genetic minimization algorithm, which makes it possible
to reveal the ranges of parameter degeneracy as well. The method is illustrated
by modeling the structure of the two infrared dark clouds IRDC-320.27+029 (P2)
and IRDC-321.73+005 (P2). The derived density and temperature distributions can
be used to model the chemical structure and spectral maps in molecular lines.Comment: Accepted for publication in Astronomy Report
- …