4 research outputs found
ΠΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠ²Π½ΠΎΠ³ΠΎ Π»Π΅ΡΠ΅Π½ΠΈΡ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ ΠΎΡΡΡΡΠΌ ΡΡΠΎΠΌΠ±ΠΎΡΠ»Π΅Π±ΠΈΡΠΎΠΌ ΠΏΠΎΠ΄ΠΊΠΎΠΆΠ½ΡΡ Π²Π΅Π½ Π½ΠΈΠΆΠ½ΠΈΡ ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΠ΅ΠΉ ΠΏΡΠΈ Π½Π΅ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ΅ΡΠΊΠΈΡ Π½Π°ΡΡΡΠ΅Π½ΠΈΡΡ ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΠΊΠ°Π½ΠΈ
Background. Superficial thrombophlebitis of lower extremities is among the most frequent acute vascular pathologies. Concomitant undifferentiated connective tissue dysplasia exerts specific changes in its clinical course.Aim: A study of the specific dynamics of acute lower limb superficial thrombophlebitis (ST) and its surgical treatment in patients with undifferentiated connective tissue dysplasia (UCTD).Materials and methods. The case histories, surgery reports and follow-up examinations of patients treated at the Vascular Surgery Unit during 2012β2020 were analysed. A total of 86 patients had signs of UCTD and underwent classical crossectomy of the great saphenous vein (Troyanov operation).Results and discussion. Duplex ultrasound of lower limb veins in 34 (39.53 %) patients revealed a discrepancy between the upper localisation of thrombotic masses in the great saphenous lumen and the external boundary registered for clinical manifestations, hyperaemia and tissue thickening. In 69 (80.23 %) patients, four or more phenotypic UCTD markers were exposed. In 74 (86.05 %) cases, a classical Babcock phlebectomy was performed as a next stage within one year after an acute thrombophlebitis attack had subsided. Of 12 (13.95 %) patients not having had a second-stage phlebectomy within one year: 4 people had UCTD signs β they refused surgery due to absent significant complaints or marked saphenous reflux; 3 had a deep vein thrombosis episode; 5 had no saphenous reflux of lower extremities in ultrasound examination.Conclusion. The registration of phenotypic signs of undifferentiated connective tissue dysplasia is recommended in choosing a surgical tactic to treat acute ascending thrombophlebitis of lower limb saphenous veins.ΠΠ²Π΅Π΄Π΅Π½ΠΈΠ΅. ΠΠ΄Π½ΠΎΠΉ ΠΈΠ· Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡΠ°ΡΡΡΡ
ΠΎΡΡΡΡΠΉ ΡΠΎΡΡΠ΄ΠΈΡΡΡΡ
ΠΏΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΠΉ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΡΠΎΠΌΠ±ΠΎΡΠ»Π΅Π±ΠΈΡ ΠΏΠΎΠ΄ΠΊΠΎΠΆΠ½ΡΡ
Π²Π΅Π½ Π½ΠΈΠΆΠ½ΠΈΡ
ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΠ΅ΠΉ, ΠΈ Π½Π°Π»ΠΈΡΠΈΠ΅ ΡΠΎΠΏΡΡΡΡΠ²ΡΡΡΠ΅ΠΉ Π½Π΅Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ Π΄ΠΈΡΠΏΠ»Π°Π·ΠΈΠΈ ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΠΊΠ°Π½ΠΈ Π²ΡΠ·ΡΠ²Π°Π΅Ρ ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ Π² ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΎΠΌ ΡΠ΅ΡΠ΅Π½ΠΈΠΈ ΠΏΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΠΈ.Π¦Π΅Π»Ρ: ΠΏΡΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°ΡΡ ΡΠΏΠ΅ΡΠΈΡΠΈΠΊΡ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ ΠΎΡΡΡΠΎΠ³ΠΎ ΡΡΠΎΠΌΠ±ΠΎΡΠ»Π΅Π±ΠΈΡΠ° ΠΏΠΎΠ΄ΠΊΠΎΠΆΠ½ΡΡ
Π²Π΅Π½ Π½ΠΈΠΆΠ½ΠΈΡ
ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΠ΅ΠΉ (Π’Π€ΠΠ) ΠΈ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ Ρ
ΠΈΡΡΡΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π»Π΅ΡΠ΅Π½ΠΈΡ Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ², ΠΈΠΌΠ΅ΡΡΠΈΡ
ΠΏΡΠΈΠ·Π½Π°ΠΊΠΈ Π½Π΅Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ Π΄ΠΈΡΠΏΠ»Π°Π·ΠΈΠΈ ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΠΊΠ°Π½ΠΈ (ΠΠΠ‘Π’).ΠΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΈ ΠΌΠ΅ΡΠΎΠ΄Ρ. ΠΡΠ»ΠΈ ΠΈΠ·ΡΡΠ΅Π½Ρ ΠΈΡΡΠΎΡΠΈΠΈ Π±ΠΎΠ»Π΅Π·Π½ΠΈ, ΠΏΡΠΎΡΠΎΠΊΠΎΠ»Ρ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΉ ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΡΡΡΠΈΡ
ΠΊΠΎΠ½ΡΡΠΎΠ»ΡΠ½ΡΡ
ΠΎΡΠΌΠΎΡΡΠΎΠ² ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ², ΠΏΠΎΠ»ΡΡΠ°Π²ΡΠΈΡ
Π»Π΅ΡΠ΅Π½ΠΈΠ΅ Π² ΠΎΡΠ΄Π΅Π»Π΅Π½ΠΈΠΈ ΡΠΎΡΡΠ΄ΠΈΡΡΠΎΠΉ Ρ
ΠΈΡΡΡΠ³ΠΈΠΈ Π·Π° ΠΏΠ΅ΡΠΈΠΎΠ΄ Ρ 2012 ΠΏΠΎ 2020 Π³ΠΎΠ΄. ΠΠ±ΡΠ΅Π΅ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ ΠΏΡΠΈΠ·Π½Π°ΠΊΠ°ΠΌΠΈ Π½Π΅Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ Π΄ΠΈΡΠΏΠ»Π°Π·ΠΈΠΈ ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΠΊΠ°Π½ΠΈ ΠΈ ΠΏΠ΅ΡΠ΅Π½Π΅ΡΡΠΈΡ
ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΡΡ ΠΊΡΠΎΡΡΡΠΊΡΠΎΠΌΠΈΡ Π±ΠΎΠ»ΡΡΠΎΠΉ ΠΏΠΎΠ΄ΠΊΠΎΠΆΠ½ΠΎΠΉ Π²Π΅Π½Ρ (ΠΎΠΏΠ΅ΡΠ°ΡΠΈΡ Π’ΡΠΎΡΠ½ΠΎΠ²Π°) β 86 ΡΠ΅Π»ΠΎΠ²Π΅ΠΊ.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈ ΠΎΠ±ΡΡΠΆΠ΄Π΅Π½ΠΈΠ΅. ΠΡΠΈ Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΠΈ ΡΠ»ΡΡΡΠ°Π·Π²ΡΠΊΠΎΠ²ΠΎΠ³ΠΎ Π΄ΡΠΏΠ»Π΅ΠΊΡΠ½ΠΎΠ³ΠΎ ΡΠΊΠ°Π½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π²Π΅Π½ Π½ΠΈΠΆΠ½ΠΈΡ
ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΠ΅ΠΉ Ρ 34 ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² (39,53 %) Π·Π°ΡΠΈΠΊΡΠΈΡΠΎΠ²Π°Π½ΠΎ Π½Π΅ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠ΅ ΡΡΠΎΠ²Π½Ρ Π²Π΅ΡΡ
Π½Π΅ΠΉ Π³ΡΠ°Π½ΠΈΡΡ ΡΡΠΎΠΌΠ±ΠΎΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΌΠ°ΡΡ Π² ΠΏΡΠΎΡΠ²Π΅ΡΠ΅ ΡΡΠ²ΠΎΠ»Π° ΠΌΠ°Π³ΠΈΡΡΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΏΠΎΠ΄ΠΊΠΎΠΆΠ½ΠΎΠΉ Π²Π΅Π½Ρ ΠΏΠΎ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΊ Π²Π½Π΅ΡΠ½Π΅ΠΉ Π·Π°ΡΠΈΠΊΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ Π³ΡΠ°Π½ΠΈΡΠ΅ ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΡΠΎΡΠ²Π»Π΅Π½ΠΈΠΉ β Π³ΠΈΠΏΠ΅ΡΠ΅ΠΌΠΈΠΈ, ΡΠΏΠ»ΠΎΡΠ½Π΅Π½ΠΈΡ ΡΠΊΠ°Π½Π΅ΠΉ. Π£ 69 ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² (80,23 %) Π±ΡΠ»ΠΎ Π²ΡΡΠ²Π»Π΅Π½ΠΎ 4 ΠΈ Π±ΠΎΠ»Π΅Π΅ ΠΏΡΠΈΠ·Π½Π°ΠΊΠ° ΡΠ΅Π½ΠΎΡΠΈΠΏΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ, Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠ½ΡΡ
Π΄Π»Ρ Π½Π΅Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ Π΄ΠΈΡΠΏΠ»Π°Π·ΠΈΠΈ ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΠΊΠ°Π½ΠΈ. Π 74 (86,05 %) ΡΠ»ΡΡΠ°ΡΡ
Π½Π° ΡΡΠΎΠΊΠ°Ρ
Π΄ΠΎ 1 Π³ΠΎΠ΄Π° Π±ΡΠ»Π° Π²ΡΠΏΠΎΠ»Π½Π΅Π½Π° Π²ΡΠΎΡΡΠΌ ΡΡΠ°ΠΏΠΎΠΌ ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ»Π΅Π±ΡΠΊΡΠΎΠΌΠΈΡ ΠΏΠΎ ΠΡΠ±ΠΊΠΎΠΊΠΊΡ ΠΏΠΎΡΠ»Π΅ ΡΡΠΈΡ
Π°Π½ΠΈΡ ΠΎΡΡΡΠΎΠ³ΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄Π° ΡΡΠΎΠΌΠ±ΠΎΡΠ»Π΅Π±ΠΈΡΠ°. ΠΠ· 12 (13,95 %) ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Π±Π΅Π· Π²ΡΠΎΡΠΎΠ³ΠΎ ΡΡΠ°ΠΏΠ° ΡΠ»Π΅Π±ΡΠΊΡΠΎΠΌΠΈΠΈ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π³ΠΎΠ΄Π°: 4 ΠΏΠ°ΡΠΈΠ΅Π½ΡΠ° ΠΈΠΌΠ΅Π»ΠΈ ΠΏΡΠΈΠ·Π½Π°ΠΊΠΈ Π½Π΅Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ Π΄ΠΈΡΠΏΠ»Π°Π·ΠΈΠΈ ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΠΊΠ°Π½ΠΈ β ΠΎΡΠΊΠ°Π·Π°Π»ΠΈΡΡ ΠΎΡ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΈ Π²Π²ΠΈΠ΄Ρ ΠΎΡΡΡΡΡΡΠ²ΠΈΡ Π·Π½Π°ΡΠΈΠΌΡΡ
ΠΆΠ°Π»ΠΎΠ± ΠΈ ΠΎΡΡΡΡΡΡΠ²ΠΈΡ Π²ΡΡΠ°ΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΠ΅ΡΠ»ΡΠΊΡΠ° ΠΏΠΎ ΠΏΠΎΠ΄ΠΊΠΎΠΆΠ½ΡΠΌ Π²Π΅Π½Π°ΠΌ, Ρ 3 ΠΎΡΠΌΠ΅ΡΠ΅Π½ ΡΠΏΠΈΠ·ΠΎΠ΄ ΡΡΠΎΠΌΠ±ΠΎΠ·Π° Π³Π»ΡΠ±ΠΎΠΊΠΈΡ
Π²Π΅Π½, 5 ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² β ΠΏΠΎ Π΄Π°Π½Π½ΡΠΌ ΡΠ»ΡΡΡΠ°Π·Π²ΡΠΊΠΎΠ²ΠΎΠ³ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠ΅ΡΠ»ΡΠΊΡΠ° ΠΏΠΎ ΠΏΠΎΠ΄ΠΊΠΎΠΆΠ½ΡΠΌ Π²Π΅Π½Π°ΠΌ Π½ΠΈΠΆΠ½ΠΈΡ
ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΠ΅ΠΉ Π½Π΅ Π±ΡΠ»ΠΎ.ΠΠ°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅. ΠΡΠΈ Π²ΡΠ±ΠΎΡΠ΅ Ρ
ΠΈΡΡΡΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ°ΠΊΡΠΈΠΊΠΈ Π»Π΅ΡΠ΅Π½ΠΈΡ ΠΏΡΠΈ ΠΎΡΡΡΠΎΠΌ Π²ΠΎΡΡ
ΠΎΠ΄ΡΡΠ΅ΠΌ ΡΡΠΎΠΌΠ±ΠΎΡΠ»Π΅Π±ΠΈΡΠ΅ ΠΏΠΎΠ΄ΠΊΠΎΠΆΠ½ΡΡ
Π²Π΅Π½ Π½ΠΈΠΆΠ½ΠΈΡ
ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΠ΅ΠΉ ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄ΠΎΠ²Π°Π½ΠΎ ΡΠΈΠΊΡΠΈΡΠΎΠ²Π°ΡΡ Π½Π°Π»ΠΈΡΠΈΠ΅ ΠΈΠ»ΠΈ ΠΎΡΡΡΡΡΡΠ²ΠΈΠ΅ ΠΏΡΠΈΠ·Π½Π°ΠΊΠΎΠ² Π½Π΅Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ Π΄ΠΈΡΠΏΠ»Π°Π·ΠΈΠΈ ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΠΊΠ°Π½ΠΈ ΠΏΠΎ ΡΠ΅Π½ΠΎΡΠΈΠΏΡ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠ°
Effect of carbon and cold rolling on the latent heat upon Ξ΅ β Ξ³ transformation in metastable Fe-Mn alloys
Metastable Fe-Mn alloys exhibit a non-thermoelastic martensitic transformation which is accompanied by a significant thermal effect (ca. 20 J/g). Among Fe-Mn alloys, the highest value of latent heat was registered in alloys with 17-18 wt. % Mn. In this work we investigate effects of carbon (up to 0.4 wt. %) and cold rolling (5-25% of thickness reduction) on the latent heat and the temperature hysteresis of the martensitic transformation. Changes in chemical and phase composition are analyzed based on the goal of enthalpy maximizing. The martensite β austenite transitions are registered using differential scanning calorimetry and dilatometry. The phase composition is determined by means of X-ray diffraction. An effect of thermocycling is considered in connection with microstructural and enthalpy changes