14,182 research outputs found
Embedded direct numerical simulation for aeronautical CFD
AbstractA method is proposed by which a direct numerical simulation of the compressible Navier-Stokes equations may be embedded within a more general aeronautical CFD code. The method may be applied to any code which solves the Euler equations or the Favre-averaged Navier-Stokes equations. A formal decomposition of the flowfield is used to derive modified equations for use with direct numerical simulation solvers. Some preliminary applications for model flows with transitional separation bubbles are given.</jats:p
Nonlinear Rescaling of Control Laws with Application to Stabilization in the Presence of Magnitude Saturation
Motivated by some recent results on the stabilization of homogeneous systems, we present a gain-scheduling approach for the stabilization of non-linear systems. Given
a one-parameter family of stabilizing feedbacks and associated Lyapunov functions, we show how the parameter can be rescaled as a function of the state to give a new
stabilizing controller. In the case of homogeneous systems, we obtain generalizations of some existing results. We show that this approach can also be applied to nonhomogeneous
systems. In particular, the main application considered in this paper is to the problem of stabilization with magnitude limitations. For this problem, we develop a design method for single-input controllable systems with eigenvalues in the left closed plane
Accurate photonic temporal mode analysis with reduced resources
The knowledge and thus characterization of the temporal modes of quantum
light fields is important in many areas of quantum physics ranging from
experimental setup diagnosis to fundamental-physics investigations. Recent
results showed how the auto-correlation function computed from continuous-wave
homodyne measurements can be a powerful way to access the temporal mode
structure. Here, we push forward this method by providing a deeper
understanding and by showing how to extract the amplitude and phase of the
temporal mode function with reduced experimental resources. Moreover, a
quantitative analysis allows us to identify a regime of parameters where the
method provides a trustworthy reconstruction, which we illustrate
experimentally
Preferred levels for background ducking to produce esthetically pleasing audio for TV with clear speech
In audio production, background ducking facilitates speech intelligibility while allowing the background to fulfill its purpose, e.g., to create ambience, set the mood, or convey semantic cues. Technical details for recommended ducking practices are not currently documented in the literature. Hence, we first analyzed common practices found in TV documentaries. Second, a listening test investigated the preferences of 22 normal-hearing participants on the Loud- ness Difference (LD) between commentary and background during ducking. Highly personal preferences were observed, highlighting the importance of object-based personalization. Sta- tistically significant difference was found between non-expert and expert listeners. On average, non-experts preferred LDs that were 4 LU higher than the ones preferred by experts. A sta- tistically significant difference was also found between Commentary over Music (CoM) and Commentary over Ambience (CoA). Based on the test results, we recommend at least 10 LU difference for CoM and at least 15 LU for CoA. Moreover, a computational method based on the Binaural Distortion-Weighted Glimpse Proportion (BiDWGP) was found to match the median preferred LD for each item with good accuracy (mean absolute error = 1.97 LU ± 2.50)
- …