127 research outputs found

    Roles of two successive phase transitions in new spin-Peierls system TiOBr

    Full text link
    In this sturdy, we determine the roles of two successive phase transitions in the new spin-Peierls system TiOBr by electron and synchrotron X-ray diffraction analyses. Results show an incommensurate superstructure along the h- and k-directions between Tc1=27K and Tc2=47K, and a twofold superstructure which is related to a spin-Peierls lattice distortion below Tc1. The diffuse scattering observed above Tc2 indicates that a structural correlation develops at a high temperature. We conclude that Tc2 is a second-order lock-in temperature, which is related to the spin-Peierls lattice distortion with the incommensurate structure, and that Tc1 is from incommensurate to commensurate phase transition temperature accompanying the first-order spin-Peierls lattice distortion.Comment: 4 pages, 5 figure

    Pressure-induced changes in the magnetic and valence state of EuFe2As2

    Full text link
    We present the results of electrical resistivity, ac specific heat, magnetic susceptibility, X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) of the ternary iron arsenide EuFe2As2 single crystal under pressure. Applying pressure leads to a continuous suppression of the antiferromagnetism associated with Fe moments and the antiferromagnetic transition temperature becomes zero in the vicinity of a critical pressure Pc ~2.5-2.7 GPa. Pressure-induced re-entrant superconductivity, which is highly sensitive to the homogeneity of the pressure, only appears in the narrow pressure region in the vicinity of Pc due to the competition between superconductivity and the antiferromagnetic ordering of Eu2+ moments. The antiferromagnetic state of Eu2+ moments changes to the ferromagnetic state above 6 GPa. We also found that the ferromagnetic order is suppressed with further increasing pressure, which is connected with a valence change of Eu ions.Comment: 7 pages, 7 figures, accepted for publication in Phys. Rev.

    Compressed Sensing of Compton Profiles for Fermi Surface Reconstruction: Concept and Implementation

    Full text link
    Compton scattering is a well-established technique that can provide detailed information about electronic states in solids. Making use of the principle of tomography, it is possible to determine the Fermi surface from sets of Compton-scattering data with different scattering axes. Practical applications, however, are limited due to long acquisition time required for measuring along enough number of scattering directions. Here, we propose to overcome this difficulty using compressed sensing. Taking advantage of a hidden sparsity in the momentum distribution, we are able to reconstruct the three-dimensional momentum distribution of bcc-Li, and identify the Fermi surface with as little as 14 directions of scattering data with unprecedented accuracy. This compressed-sensing approach will permit further wider applications of the Compton scattering experiments.Comment: 12 pages, 7 figure

    Quench Characteristics of the ATLAS Central Solenoid

    Get PDF

    Effect of Anharmonicity on the Kondo Phenomena of a Magnetic Ion Vibrating in a Confinement Potential

    Full text link
    Effect of anharmonicity of a cage potential for a magnetic ion vibrating in a metal is investigated by the numerical renormalization group method. The cage potential is assumed to be one-dimensional and of the double-well type. In the absence of the Coulomb interaction, we find continuous crossover among the three limiting cases: Yu-Anderson-type Kondo regime, the double-well-type Kondo one, and the renormalized Fermi chain one. In the entire parameter space of the double-well potential, the ground state is described by a local Fermi liquid. In the Yu-Anderson-type Kondo regime, a quantum phase transition to the ground state with odd parity takes place passing through the two-channel Kondo fixed point when the Coulomb interaction increases. Therefore, the vibration of a magnetic ion in an oversized cage structure is a promising route to the two-channel Kondo effect.Comment: 6 pages, 3 figures, accepted for JPS

    Neutron and X-ray Scattering Studies of the Lightly-Doped Spin-Peierls System Cu(1-x)Cd(x)GeO3

    Full text link
    Single crystals of the lightly-doped spin-Peierls system Cu(1-x)Cd(x)GeO3 have been studied using bulk susceptibility, x-ray diffraction, and inelastic neutron scattering techniques. We investigate the triplet gap in the magnetic excitation spectrum of this quasi-one dimensional quantum antiferromagnet, and its relation to the spin-Peierls dimerisation order parameter. We employ two different theoretical forms to model the inelastic neutron scattering cross section and chi''(Q,omega), and show the sensitivity of the gap energy to the choice of chi''(Q,omega). We find that a finite gap exists at the spin-Peierls phase transition.Comment: 15 Pages, 7 Figures, Submitted to J. Phys. :Condensed Matte
    corecore