22 research outputs found
Structure and functional characterization of pyruvate decarboxylase from Gluconacetobacter diazotrophicus
BACKGROUND: Bacterial pyruvate decarboxylases (PDC) are rare. Their role in ethanol production and in bacterially
mediated ethanologenic processes has, however, ensured a continued and growing interest. PDCs from Zymomonas
mobilis (ZmPDC), Zymobacter palmae (ZpPDC) and Sarcina ventriculi (SvPDC) have been characterized and ZmPDC
has been produced successfully in a range of heterologous hosts. PDCs from the Acetobacteraceae and their role in
metabolism have not been characterized to the same extent. Examples include Gluconobacter oxydans (GoPDC),
G. diazotrophicus (GdPDC) and Acetobacter pasteutrianus (ApPDC). All of these organisms are of commercial importance.
RESULTS: This study reports the kinetic characterization and the crystal structure of a PDC from Gluconacetobacter
diazotrophicus (GdPDC). Enzyme kinetic analysis indicates a high affinity for pyruvate (KM 0.06 mM at pH 5), high
catalytic efficiencies, pHopt of 5.5 and Topt at 45 degrees C. The enzyme is not thermostable (T of
18 minutes at 60 degrees C) and the calculated number of bonds between monomers and dimers do not give clear indications
for the relatively lower thermostability compared to other PDCs. The structure is highly similar to those described for Z.
mobilis (ZmPDC) and A. pasteurianus PDC (ApPDC) with a rmsd value of 0.57 A for C? when comparing GdPDC to that
of ApPDC. Indole-3-pyruvate does not serve as a substrate for the enzyme. Structural differences occur in two loci,
involving the regions Thr341 to Thr352 and Asn499 to Asp503.
CONCLUSIONS: This is the first study of the PDC from G. diazotrophicus (PAL5) and lays the groundwork for future
research into its role in this endosymbiont. The crystal structure of GdPDC indicates the enzyme to be evolutionarily
closely related to homologues from Z. mobilis and A. pasteurianus and suggests strong selective pressure to keep the
enzyme characteristics in a narrow range. The pH optimum together with reduced thermostability likely reflect the
host organisms niche and conditions under which these properties have been naturally selected for. The lack of activity
on indole-3-pyruvate excludes this decarboxylase as the enzyme responsible for indole acetic acid production in
G. diazotrophicus.IS
Enhancement of heat transfer in phase change material using graphite-paraffin composites
Phase change materials (PCMs) are energy storage materials which can be used for maintaining a controlled thermal environment for various applications in earth and space. PCMs are used in advanced technologies in aerospace cooling applications like heat exchangers and heat pipes for re-entry vehicles and spacecraft. Paraffin is a phase change material (PCM) commonly used for energy storage-related applications. Paraffin wax exhibits slow thermal response due to low thermal conductivity value (~0.2 W/m K for most paraffin waxes). In the present work, an attempt is made to fabricate a composite PCM using graphite powder. Such a composite material has enhanced thermal conductivity along with reduced melting period which are desirable properties of a PCM during solid to liquid phase change process. The reduction in melting period is indicated by the difference in change in temperature measured by the thermocouples during a specified time. The temperature variation and solid-liquid interface formation during the melting process are experimentally studied. The results showed that composite graphite powder with paraffin can improve the total phase transition time
Enhancement of heat transfer in phase change material using graphite-paraffin composites
Phase change materials (PCMs) are energy storage materials which can be used for maintaining a controlled thermal environment for various applications in earth and space. PCMs are used in advanced technologies in aerospace cooling applications like heat exchangers and heat pipes for re-entry vehicles and spacecraft. Paraffin is a phase change material (PCM) commonly used for energy storage-related applications. Paraffin wax exhibits slow thermal response due to low thermal conductivity value (~0.2 W/m K for most paraffin waxes). In the present work, an attempt is made to fabricate a composite PCM using graphite powder. Such a composite material has enhanced thermal conductivity along with reduced melting period which are desirable properties of a PCM during solid to liquid phase change process. The reduction in melting period is indicated by the difference in change in temperature measured by the thermocouples during a specified time. The temperature variation and solid-liquid interface formation during the melting process are experimentally studied. The results showed that composite graphite powder with paraffin can improve the total phase transition time
Slug-bubble regime identification in a square channel using a IR Sensor
Design of micro thrusters for nano satellites, require a detailed understanding of multiphase flow phenomena in micro/mini-channels. This work focuses on the experimental and numerical investigation of an Infra-red sensor behavior during two phase flow of a slug-bubble train (air-water two-phase flow). The regime flows inside a square channel of sides 2 mm and 0.5 mm thickness made of borosilicate glass. The interference of the slug-bubble train flow pattern on the IR transceiver characteristics is experimentally studied as current signals corresponding to the number of photons received by the photodiode. A numerical model is developed to analyze the IR transceiver characteristics using COMSOL Multiphysics package. The experimental and numerical results are in good agreement and the developed system with proper calibration can be used to design feedback loops for micro thrusters
Accuracy and validity of space analysis and irregularity index measurements using digital models
Digital copies of study models may avoid the storage and retrieval issues of plaster study models, but measurements made on digital models may not be as accurate as measurements made on traditional study models
Slug-bubble regime identification in a square channel using a IR Sensor
Design of micro thrusters for nano satellites, require a detailed understanding of multiphase flow phenomena in micro/mini-channels. This work focuses on the experimental and numerical investigation of an Infra-red sensor behavior during two phase flow of a slug-bubble train (air-water two-phase flow). The regime flows inside a square channel of sides 2 mm and 0.5 mm thickness made of borosilicate glass. The interference of the slug-bubble train flow pattern on the IR transceiver characteristics is experimentally studied as current signals corresponding to the number of photons received by the photodiode. A numerical model is developed to analyze the IR transceiver characteristics using COMSOL Multiphysics package. The experimental and numerical results are in good agreement and the developed system with proper calibration can be used to design feedback loops for micro thrusters