12 research outputs found

    Accurate Fundamental Parameters or A, F, and G-type Supergiants in the Solar Neighbourhood

    Full text link
    The following parameters are determined for 63 Galactic supergiants in the solar neighbourhood: effective temperature Teff, surface gravity log g, iron abundance log e(Fe), microturbulent parameter Vt, mass M/Msun, age t and distance d. A significant improvement in the accuracy of the determination of log g and, all parameters dependent on it, is obtained through application of van Leeuwens (2007) re-reduction of the Hipparcos parallaxes. The typical error in the log g values is now +-0.06 dex for supergiants with distances d < 300 pc and +-0.12 dex for supergiants with d between 300 and 700 pc; the mean error in Teff for these stars is +-120 K. For supergiants with d > 700 pc parallaxes are uncertain or unmeasurable, so typical errors in their log g values are 0.2-0.3 dex. A new Teff scale for A5-G5 stars of luminosity classes Ib-II is presented. Spectral subtypes and luminosity classes of several stars are corrected. Combining the Teff and log g with evolutionary tracks, stellar masses and ages are determined; a majority of the sample has masses between 4 Msun and 15 Msun and, hence, their progenitors were early to middle B-type main sequence stars. Using Fe ii lines, which are insensitive to departures from LTE, the microturbulent parameter Vt and the iron abundance log e(Fe) are determined from high-resolution spectra. The parameter Vt is correlated with gravity: Vt increases with decreasing log g. The mean iron abundance for the 48 supergiants with distances d < 700 pc is log e(Fe)=7.48+-0.09, a value close to the solar value of 7.45+-0.05, and thus the local supergiants and the Sun have the same metallicity.Comment: 12 pages, 9 figures. Will be published at MNRA

    The atmospheric parameters and spectral interpolator for the stars of MILES

    Full text link
    Context. Empirical libraries of stellar spectra are used for stellar classification and synthesis of stellar populations. MILES is a medium spectral-resolution library in the optical domain covering a wide range of temperatures, surface gravities and metallicities. Aims. We re-determine the atmospheric parameters of these stars in order to improve the homogeneity and accuracy. We build an interpolating function that returns a spectrum as a function of the three atmospheric parameters, and finally, we characterize the precision of the wavelength calibration and stability of the spectral resolution. Methods. We use the ULySS program with the ELODIE library as a reference and compare the results with literature compilations. Results. We obtain precisions of 60 K, 0.13 and 0.05 dex respectively for Teff, log g and [Fe/H] for the FGK stars. For the M stars, the mean errors are 38 K, 0.26 and 0.12 dex, and for the OBA 3.5%, 0.17 and 0.13 dex. We construct an interpolator that we test against the MILES stars themselves. We test it also by measuring the atmospheric parameters of the CFLIB stars with MILES as reference and find it to be more reliable than the ELODIE interpolator for the evolved hot stars, like in particular those of the blue horizontal branch.Comment: A&A accepted, 29 pages, 6 figure

    Effective dose increase of cyclotron-produced 99mTc labelled radiopharmaceuticals

    Get PDF
    Alternative Technetium-99m production via 100Mo(p,2n)99mTc reaction route using medical cyclotrons, is reliable and relatively cost-effective1. However, it was found that the 99mTc thus produced contains small quantities of several 9xTc radioisotopes (93mTc, 93Tc, 94Tc, 94mTc, 95Tc, 95mTc 96Tc and 97mTc)2. The aim of this work was to estimate the effective dose-increase (DI) due to the contribution of 9xTc contaminants, after intravenous injection of four radiopharmaceuticals prepared with cyclotron-produced 99mTc (CP-99mTc) using 99.05% 100Mo-enriched molybdenum metallic targets

    Pallio-Pallial Tangential Migrations and Growth Signaling: New Scenario for Cortical Evolution?

    No full text
    corecore