101 research outputs found
Enhanced surface plasmon polariton propagation induced by active dielectrics
We present numerical simulations for the propagation of surface plasmon
polaritons in a dielectric-metal-dielectric waveguide using COMSOL multiphysics
software. We show that the use of an active dielectric with gain that
compensates metal absorption losses enhances substantially plasmon propagation.
Furthermore, the introduction of the active material induces, for a specific
gain value, a root in the imaginary part of the propagation constant leading to
infinite propagation of the surface plasmon. The computational approaches
analyzed in this work can be used to define and tune the optimal conditions for
surface plasmon polariton amplification and propagation
Linear and non-linear photonic rogue waves in complex transparent media
Ocean rogue waves (RW) -huge solitary waves- have for long triggered the interest
of scientists. RWs emerge in a complex environment and it is still unclear if their appearance is due
to linear or nonlinear processes. Recent works have demonstrated that RWs appear in various other
physical systems such as microwaves, nonlinear crystals, cold atoms, etc
Linear and non-linear photonic rogue waves in complex transparent media
Ocean rogue waves (RW) -huge solitary waves- have for long triggered the interest
of scientists. RWs emerge in a complex environment and it is still unclear if their appearance is due
to linear or nonlinear processes. Recent works have demonstrated that RWs appear in various other
physical systems such as microwaves, nonlinear crystals, cold atoms, etc
Analytical, numerical, and experimental investigation of a Luneburg lens system for directional cloaking
In this study, the design of a directional cloaking based on the Luneburg lens system is proposed and its operating principle is experimentally verified. The cloaking concept is analytically investigated via geometrical optics and numerically realized with the help of the finite-difference time-domain method. In order to benefit from its unique focusing and/or collimating characteristics of light, the Luneburg lens is used. We show that by the proper combination of Luneburg lenses in an array form, incident light bypasses the region between junctions of the lenses, i.e., the "dark zone." Hence, direct interaction of an object with propagating light is prevented if one places the object to be cloaked inside that dark zone. This effect is used for hiding an object which is made of a perfectly electric conductor material. In order to design an implementable cloaking device, the Luneburg lens is discretized into a photonic crystal structure having gradually varying air cylindrical holes in a dielectric material by using Maxwell Garnett effective medium approximations. Experimental verifications of the designed cloaking structure are performed at microwave frequencies of around 8 GHz. The proposed structure is fabricated by three-dimensional printing of dielectric polylactide material and a brass metallic alloy is utilized in place of the perfectly electric conductor material in microwave experiments. Good agreement between numerical and experimental results is found. © 2019 American Physical Society
cDNA display: a novel screening method for functional disulfide-rich peptides by solid-phase synthesis and stabilization of mRNA–protein fusions
We report a robust display technology for the screening of disulfide-rich peptides, based on cDNA–protein fusions, by developing a novel and versatile puromycin-linker DNA. This linker comprises four major portions: a ‘ligation site’ for T4 RNA ligase, a ‘biotin site’ for solid-phase handling, a ‘reverse transcription primer site’ for the efficient and rapid conversion from an unstable mRNA–protein fusion (mRNA display) to a stable mRNA/cDNA–protein fusion (cDNA display) whose cDNA is covalently linked to its encoded protein and a ‘restriction enzyme site’ for the release of a complex from the solid support. This enables not only stabilizing mRNA–protein fusions but also promoting both protein folding and disulfide shuffling reactions. We evaluated the performance of cDNA display in different model systems and demonstrated an enrichment efficiency of 20-fold per selection round. Selection of a 32-residue random library against interleukin-6 receptor generated novel peptides containing multiple disulfide bonds with a unique linkage for its function. The peptides were found to bind with the target in the low nanomolar range. These results show the suitability of our method for in vitro selections of disulfide-rich proteins and other potential applications
Construction and Analysis of High-Complexity Ribosome Display Random Peptide Libraries
Random peptide libraries displayed on the ribosome are becoming a new tool for the in vitro selection of biologically relevant macromolecules, including epitopes, antagonists, enzymes, and cell-surface receptors. Ribosome display is a cell-free system of coupling individual nascent proteins (phenotypes) to their corresponding mRNA (genotypes) by the formation of stable protein-ribosome-mRNA complexes and permitting the selection of a functional nascent protein by iterative cycles of panning and reverse transcription-polymerase chain reaction (RT-PCR) amplification in vitro. The complexity of the random peptide library is critical for the success of a panning experiment; greater the diversity of sequences within the library, the more likely it is that the library comprises sequences that can bind a given target with specific affinity. Here, we have used the cell-free system Escherichia coli S30 lysate to construct high-complexity random peptide libraries (>1014 independent members) by introducing strategies that are different from the methods described by Mattheakis et al. and Lamla et al. The key step in our method is to produce nanomole (nmol) amounts of DNA elements that are necessary for in vitro transcription/translation by using PCR but not plasmid DNA. Library design strategies and protocols that facilitate rapid identification are also presented
Ribosome Display Selection of a Murine IgG1 Fab Binding Affibody Molecule Allowing Species Selective Recovery Of Monoclonal Antibodies
Affinity reagents recognizing constant parts of antibody molecules are invaluable tools in immunotechnology applications, including purification, immobilization, and detection of immunoglobulins. In this article, murine IgG1, the primary isotype of monoclonal antibodies (mAbs) was used as target for selection of novel binders from a combinatorial ribosome display (RD) library of 1011 affibody molecules. Four rounds of selection using three different mouse IgG1 mAbs as alternating targets resulted in the identification of binders with broad mIgG1 recognition and dissociation constants (KD) in the low nanomolar to low micromolar range. For one of the binders, denoted Zmab25, competition in binding to full length mIgG1 by a streptococcal protein G (SPG) fragment and selective affinity capture of mouse IgG1 Fab fragments after papain cleavage of a full mAb suggest that an epitope functionally overlapping with the SPG-binding site in the CH1 domain of mouse IgG1 had been addressed. Interestingly, biosensor-based binding experiments showed that neither human IgG1 nor bovine Ig, the latter present in fetal bovine serum (FBS) was recognized by Zmab25. This selective binding profile towards murine IgG1 was successfully exploited in species selective recovery of two different mouse mAbs from complex samples containing FBS, resembling a hybridoma culture supernatant
- …