12,198 research outputs found

    Asymptotics of neutron Cooper pair in weakly bound nuclei

    Full text link
    Asymptotic form of neutron Cooper pair penetrating to the exterior of nuclear surface is investigated with the Bogoliubov theory for the superfluid Fermions. Based on a two-particle Schr\"{o}dinger equation governing the Cooper pair wave function and systematic studies for both weakly bound and stable nuclei, the Cooper pair is shown to be spatially correlated even in the asymptotic large distance limit, and the penetration length of the pair condensate is revealed to be universally governed by the two-neutron separation energy S2nS_{2n} and the di-neutron mass 2m2m

    Adiabatic Selfconsistent Collective Coordinate Method for Large Amplitude Collective Motion in Superconducting Nuclei

    Get PDF
    An adiabatic approximation to the selfconsistent collective coordinate method is formulated in order to describe large amplitude collective motions in superconducting nuclei on the basis of the time-dependent Hartree-Fock-Bogoliubov equations of motion. The basic equations are presented in a local harmonic form which can be solved in a similar way as the quasiparticle RPA equations. The formalism guarantees the conservation of nucleon number expectation values. An extension to the multi-dimensional case is also discussed

    Pair correlation of giant halo nuclei in continuum Skyrme-Hartree-Fock-Bogoliubov theory

    Full text link
    The giant halos predicted in neutron-rich Zr isotopes with A=124138A=124-138 are investigated by using the self-consistent continuum Skyrme Hartree-Fock-Bogoliubov approach, in which the asymptotic behavior of continuum quasiparticle states is properly treated by the Green's function method. We study in detail the neutron pair correlation involved in the giant halo by analyzing the asymptotic exponential tail of the neutron pair condensate (pair density) in addition to that of the neutron particle density. The neutron quasiparticle spectra associated with these giant halo nuclei are examined. It is found that the asymptotic exponential tail of the neutron pair condensate is dominated by non-resonant continuum quasiparticle states corresponding to the scattering states with low asymptotic kinetic energy. This is in contrast to the asymptotic tail of the neutron density, whose main contributions arise from the resonant quasiparticle states corresponding to the weakly-bound single-particle orbits and resonance orbits in the Hartree-Fock potential

    Application of the Adiabatic Selfconsistent-Collective-Coordinate Method to a Solvable Model of Prolate-Oblate Shape Coexistence

    Full text link
    The adiabatic selfconsistent collective coordinate method is applied to an exactly solvable multi-O(4) model which simulates nuclear shape coexistence phenomena. Collective mass and dynamics of large amplitude collective motions in this model system are analysed, and it is shown that the method can well describe the tunneling motions through the barrier between the prolate and oblate local minima in the collective potential. Emergence of the doublet pattern is well reproduced.Comment: 25 pages including 9 figure

    Theoretical study of the decay-out spin of superdeformed bands in the Dy and Hg regions

    Full text link
    Decay of the superdeformed bands have been studied mainly concentrating upon the decay-out spin, which is sensitive to the tunneling probability between the super- and normal-deformed wells. Although the basic features are well understood by the calculations, it is difficult to precisely reproduce the decay-out spins in some cases. Comparison of the systematic calculations with experimental data reveals that values of the calculated decay-out spins scatter more broadly around the average value in both the AA \approx 150 and 190 regions, which reflects the variety of calculated tunneling probability in each band.Comment: 6 pages 4 figures (30 PS files). To appear in Proc. of NS2000 (Nuclear Structure 2000) conf., at MSU, 15-19 Aug., 200

    Pairing collectivity in medium-mass neutron-rich nuclei near drip-line

    Get PDF
    We look for collective excitations originating from the strong surface pairing in unstable nuclei near the neutron drip-line. The soft dipole excitation is such a pairing mode as it exhibits a character of core-vs-dineutron motion. Possibility of the hydrodynamic phonon mode (the Anderson-Bogoliubov mode) is also discussed.Comment: 9 pages, a talk presented at Collective Motion in Nuclei under Extreme Conditions (COMEX2), June 20-23, 2006, St. Goar, German

    Non-monotonic temperature dependence of thermopower in strongly correlated electron systems

    Full text link
    We examine the temperature dependence of thermopower in the single band Hubbard model using dynamical mean-field theory. The strong Coulomb interaction brings about the coherent-to-incoherent crossover as temperature increases. As a result, the thermopower exhibits non-monotonic temperature dependence and asymptotically approaches values given by the Mott-Heikes formula. In the light of our theoretical result, we discuss the thermopower in some transition metal oxides. The magnetic field dependence of the thermopower is also discussed.Comment: 4 pages, 4 figure

    The Si ribbon crystal for the solar battery using the horizontal pull method

    Get PDF
    A method utilizing a device to spray noble gases to cool the site of silicon crystal growth is described. The salient points are: (1) soft and uniform cooling was possible, (2) the length of the boundary surface of growth along the growth direction was made long over a wide width compared to the thickness, and (3) this made it possible to effectively remove the heat produced from solification. By using forced gas spraying on the solution surface in contact with the points of crystal growth, growth at the points of growth is enhanced and the rate of growth is speeded up
    corecore