22,504 research outputs found

    Ghosts of Critical Gravity

    Full text link
    Recently proposed "critical" higher-derivative gravities in AdSDAdS_D D>3D>3 are expected to carry logarithmic representation of the Anti de Sitter isometry group. In this note, we quantize linear fluctuations of these critical gravities, which are known to be either identical with linear fluctuations of Einstein's gravity or else satisfy logarithmic boundary conditions at spacial infinity. We identify the scalar product uniquely defined by the symplectic structure implied by the classical action, and show that it does not posses null vectors. Instead, we show that the scalar product between any two Einstein modes vanishes, while the scalar product of an Einstein mode with a logarithmic mode is generically nonzero. This is the basic property of logarithmic representation that makes them neither unitary nor unitarizable.Comment: v2: typos corrected and slight clarifications. 11 page

    The order of the Roberge-Weiss endpoint (finite size transition) in QCD

    Full text link
    We consider the endpoint of the Roberge-Weiss (RW) first order transition line present for imaginary baryon chemical potentials. We remark that it coincides with the finite size transition relevant in the context of large NcN_c QCD and study its order in the theory with two degenerate flavors. The RW endpoint is first order in the limit of large and small quark masses, while it weakens for intermediate masses where it is likely in the Ising 3d universality class. Phenomenological implications and further speculations about the QCD phase diagram are discussed.Comment: 5 pages, 8 figures. Version accepted for publication in Physical Review D (R

    Curvature perturbations from dimensional decoupling

    Full text link
    The scalar modes of the geometry induced by dimensional decoupling are investigated. In the context of the low energy string effective action, solutions can be found where the spatial part of the background geometry is the direct product of two maximally symmetric Euclidean manifolds whose related scale factors evolve at a dual rate so that the expanding dimensions first accelerate and then decelerate while the internal dimensions always contract. After introducing the perturbative treatment of the inhomogeneities, a class of five-dimensional geometries is discussed in detail. Quasi-normal modes of the system are derived and the numerical solution for the evolution of the metric inhomogeneities shows that the fluctuations of the internal dimensions provide a term that can be interpreted, in analogy with the well-known four-dimensional situation, as a non-adiabatic pressure density variation. Implications of this result are discussed with particular attention to string cosmological scenarios.Comment: 25 pages, 3 figure

    Treatment challenges in and outside a specialist network setting: Pancreatic neuroendocrine tumours

    Get PDF
    Pancreatic Neuroendocrine Neoplasms comprise a group of rare tumours with special biology, an often indolent behaviour and particular diagnostic and therapeutic requirements. The specialized biochemical tests and radiological investigations, the complexity of surgical options and the variety of medical treatments that require individual tailoring, mandate a multidisciplinary approach that can be optimally achieved through an organized network. The present study describes currents concepts in the management of these tumours as well as an insight into the challenges of delivering the pathway in and outside a Network

    Quantum critical behavior and trap-size scaling of trapped bosons in a one-dimensional optical lattice

    Full text link
    We study the quantum (zero-temperature) critical behaviors of confined particle systems described by the one-dimensional (1D) Bose-Hubbard model in the presence of a confining potential, at the Mott insulator to superfluid transitions, and within the gapless superfluid phase. Specifically, we consider the hard-core limit of the model, which allows us to study the effects of the confining potential by exact and very accurate numerical results. We analyze the quantum critical behaviors in the large trap-size limit within the framework of the trap-size scaling (TSS) theory, which introduces a new trap exponent theta to describe the dependence on the trap size. This study is relevant for experiments of confined quasi 1D cold atom systems in optical lattices. At the low-density Mott transition TSS can be shown analytically within the spinless fermion representation of the hard-core limit. The trap-size dependence turns out to be more subtle in the other critical regions, when the corresponding homogeneous system has a nonzero filling f, showing an infinite number of level crossings of the lowest states when increasing the trap size. At the n=1 Mott transition this gives rise to a modulated TSS: the TSS is still controlled by the trap-size exponent theta, but it gets modulated by periodic functions of the trap size. Modulations of the asymptotic power-law behavior is also found in the gapless superfluid region, with additional multiscaling behaviors.Comment: 26 pages, 34 figure
    • 

    corecore