1,378 research outputs found

    Spin nematic interaction in multiferroic compound Ba2_{2}CoGe2_{2}O7_{7}

    Full text link
    We demonstrate the existence of the spin nematic interactions in an easy-plane type antiferromagnet Ba2_{2}CoGe2_{2}O7_{7} by exploring the magnetic anisotropy and spin dynamics. Combination of neutron scattering and magnetic susceptibility measurements reveals that the origin of the in-plane anisotropy is an antiferro-type interaction of the spin nematic operator. The relation between the nematic operator and the electric polarization in the ligand symmetry of this compound is presented. The introduction of the spin nematic interaction is useful to understand the physics of spin and electric dipole in multiferroic compounds.Comment: 5 pages, 4 figure

    Studies on X-ray Thomson Scattering from Antiferroquadrupolar Order in TmTe

    Full text link
    We study Thomson scattering from the antiferroquadrupole ordering phase in TmTe. On the basis of the group theoretical treatment, we classify the selection rules of the scattering intensity governed by the orientation of the scattering vector G. Then, numerical verification is performed by invoking the ground states which are deduced from a J=7/2 multiplet model. The obtained intensity varies drastically depending on the magnitude and direction of G. We also calculate the scattering intensities under the applied field for H//(001) and (110). Their results behave differently when the orientation of G is changed, which is ascribed to the difference of their primary order parameters; O_{2}^{0} and O_{2}^{2} for H // (001) and (110), respectively. We make critical comparisons between our results for TmTe and the experimental ones for CeB_6. First, we assert that the intensities expected from TmTe at several forbidden Bragg spots are sufficient enough to be experimentally detected. Second, their intensities at (7/2,1/2,1/2) differ significantly and may be attributed to the difference of the order parametersbetween the \Gamma_3-type (O_{2}^{2} and O_{2}^{0}) and \Gamma_5-type (O_{yz}, O_{zx}, and O_{xy}) components, respectively.Comment: 18 pages, 3 figures, to be published in J. Phys. Soc. Jp

    Antiferroquadrupolar Order in the Magnetic Semiconductor TmTe

    Full text link
    The physical properties of the antiferroquadrupolar state occurring in TmTe below TQ=1.8 K have been studied using neutron diffraction in applied magnetic fields. A field-induced antiferromagnetic component k = (1/2,1/2,1/2) is observed and, from its magnitude and direction for different orientations of H, an O(2,2) quadrupole order parameter is inferred. Measurements below TN ~= 0.5 K reveal that the magnetic structure is canted, in agreement with theoretical predictions for in-plane antiferromagnetism. Complex domain repopulation effects occur when the field is increased in the ordered phases, with discontinuities in the superstructure peak intensities above 4 T.Comment: 6 pages, 6 figures, Presented at the International Conference on Strongly Correlated Electrons with Orbital Degrees of Freedom (ORBITAL 2001), September 11-14, 2001 (Sendai, JAPAN). To appear in: Journal of the Physical Society of Japan (2002

    Exciton Mediated Triplet Superconductivity in Th System PrOs4Sb12

    Full text link
    In PrOs4Sb12, the lowest-lying singlet and triplet states in a Pr 4f^2 configuration hybridize with conduction electrons having local a_u and t_u point-group symmetries. It is shown that for an attractive triplet pairing interaction, the orbital degrees of freedom of the t_u component are important. In addition, the Th point-group symmetry characteristic of skutterudites plays an important role in stabilizing triplet superconductivity.Comment: 4 pages, 2 figure

    Elastic Properties and Magnetic Phase Diagrams of Dense Kondo Compound Ce0.75La0.25B6

    Full text link
    We have investigated the elastic properties of the cubic dense Kondo compound Ce0.75La0.25B6 by means of ultrasonic measurements. We have obtained magnetic fields vs temperatures (H-T) phase diagrams under magnetic fields along the crystallographic [001], [110] and [111] axes. An ordered phase IV showing the elastic softening of c44 locates in low temperature region between 1.6 and 1.1 K below 0.7 T in all field directions. The phase IV shows an isotropic nature with regard to the field directions, while the antiferro-magnetic phase III shows an anisotropic character. A remarkable softening of c44 and a spontaneous trigonal distortion εyz+εzx+εxy recently reported by Akatsu et al. [J. Phys. Soc. Jpn. 72 (2003) 205] in the phase IV favor a ferro-quadrupole (FQ) moment of Oyz+Ozx+Oxy induced by an octupole ordering.Comment: 9 figures, Strongly Correlated Electron

    Detection of Neutron Scattering from Phase IV of Ce0.7La0.3B6: A Confirmation of the Octupole Order

    Full text link
    We have performed a single crystal neutron scattering experiment on Ce0.7La0.3B6 to investigate the order parameter of phase IV microscopically. Below the phase transition temperature 1.5 K of phase IV, weak but distinct superlattice reflections at the scattering vector (h/2,h/2,l/2) (h, l = odd number) have been observed by neutron scattering for the first time. The intensity of the superlattice reflections is stronger for high scattering vectors, which is quite different from the usual magnetic form factor of magnetic dipoles. This result directly evidences that the order parameter of phase IV has a complex magnetization density, consistent with the recent experimental and theoretical prediction in which the order parameter is the magnetic octupoles Tbeta with Gamma5 symmetry of point group Oh. Neutron scattering experiments using short wavelength neutrons, as done in this study, could become a general method to study the high-rank multipoles in f electron systems.Comment: 4 pages, 4 figure
    corecore