4,174 research outputs found

    A covariant model for the γ∗N→N∗(1520)\gamma^\ast N \to N^\ast(1520) reaction

    Full text link
    We apply the covariant spectator quark model to the study of the electromagnetic structure of the N∗(1520)N^\ast(1520) state (JP=32−J^{P}= \frac{3}{2}^-), an important resonance from the second resonance region in both spacelike and timelike regimes. The contributions from the valence quark effects are calculated for the γ∗N→N∗(1520)\gamma^\ast N \to N^\ast(1520) helicity amplitudes. The results are used to parametrize the meson cloud dominant at low Q2Q^2.Comment: 3 figure, 3 pages. Contribution to the 13th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon (MENU 2013), Rome, September-October 201

    Nucleon and gamma N -> Delta lattice form factors in a constituent quark model

    Full text link
    A covariant quark model, based both on the spectator formalism and on vector meson dominance, and previously calibrated by the physical data, is here extended to the unphysical region of the lattice data by means of one single extra adjustable parameter - the constituent quark mass in the chiral limit. We calculated the Nucleon (N) and the gamma N -> Delta form factors in the universe of values for that parameter described by quenched lattice QCD. A qualitative description of the Nucleon and gamma N -> Delta form factors lattice data is achieved for light pions.Comment: To appear in J.Phys.

    Valence quark contribution for the gamma N -> Delta quadrupole transition extracted from lattice QCD

    Full text link
    Starting with a spectator quark model developed for the nucleon (N) and the Delta in the physical pion mass region, we extend the predictions of the reaction gamma N -> Delta to the lattice QCD regime. The quark model includes S and D waves in the quark-diquark wavefunctions. Within this framework it is the D-wave part in the Delta wavefunction that generates nonzero valence contributions for the quadrupole form factors of the transition. Those contributions are however insufficient to explain the physical data, since the pion cloud contributions dominate. To separate the two effects we apply the model to the lattice regime in a region where the pion cloud effects are negligible, and adjust the D-state parameters directly to the lattice data. This process allows us to obtain a better determination of the D-state contributions. Finally, by adding a simple parametrization of the pion cloud we establish the connection between the experimental data and the lattice data.Comment: To appear in Phys. Rev.

    The shape of the Δ\Delta baryon in a covariant spectator quark model

    Full text link
    Using a covariant spectator quark model that describes the recent lattice QCD data for the Δ\Delta electromagnetic form factors and all available experimental data on γN→Δ\gamma N \to \Delta transitions, we analyze the charge and magnetic dipole distributions of the Δ\Delta baryon and discuss its shape. We conclude that the quadrupole moment of the Δ\Delta is a good indicator of the deformation and that the Δ+\Delta^+ charge distribution has an oblate shape. We also calculate transverse moments and find that they do not lead to unambiguous conclusions about the underlying shape.Comment: Extended introduction, references added, other small modifications. To appear in Phys. Rev. D. 14 pages, 8 figure

    N*(1535) electroproduction at high Q2

    Get PDF
    A covariant spectator quark model is applied to study the gamma N -> N*(1535) reaction in the large Q2 region. Starting from the relation between the nucleon and N*(1535) systems, the N*(1535) valence quark wave function is determined without the addition of any parameters. The model is then used to calculate the gamma N -> N*(1535) transition form factors. A very interesting, useful relation between the A12 and S12 helicity amplitudes for Q2 > GeV^2, is also derived.Comment: Contribution to the proceedings of the 8th International Workshop on the Physics of Excited Nucleons (NSTAR2011), Jefferson Lab, Newport News, VA, USA, May 17-20, 201

    Fixed-axis polarization states: covariance and comparisons

    Full text link
    Addressing the recent criticisms of Kvinikhidze and Miller, we prove that the spectator wave functions and currents based on ``fixed-axis'' polarization states (previously introduced by us) are Lorentz covariant, and find an explicit connection between them and conventional direction-dependent polarization states. The discussion shows explicitly how it is possible to construct pure SS-wave models of the nucleon.Comment: Changed title and introductory material to match accepted pape

    Covariant nucleon wave function with S, D, and P-state components

    Full text link
    Expressions for the nucleon wave functions in the covariant spectator theory (CST) are derived. The nucleon is described as a system with a off-mass-shell constituent quark, free to interact with an external probe, and two spectator constituent quarks on their mass shell. Integrating over the internal momentum of the on-mass-shell quark pair allows us to derive an effective nucleon wave function that can be written only in terms of the quark and diquark (quark-pair) variables. The derived nucleon wave function includes contributions from S, P and D-waves.Comment: 13 pages and 1 figur

    Technical Aspects of MRI Signal Change Quantification After Gadolinium-Based Contrast Agents' Administration

    Get PDF
    Over the last 2years several studies have been published regarding gadolinium deposition in brain structures in patients with normal renal function after repeated administrations of gadolinium-based contrast agents (GBCAs). Most of the publications are magnetic resonance imaging (MRI) based retrospective studies, where gadolinium deposition may be indirectly measured by evaluating changes in T1 signal intensity (SI) in brain tissue, particularly in the dentate nucleus (DN) and/or globus pallidi (GP). The direct correlation between T1 signal changes and gadolinium deposition was validated by human pathology studies. However, the variability of the MR equipment and parameters used across different publications, along with the inherent limitations of MRI to assess gadolinium in human tissues should be acknowledged when interpreting those studies. Nevertheless, MRI studies remain essential regarding gadolinium bio-distribution knowledge. The aim of this paper is to overview current knowledge of technical aspects of T1 signal intensity evaluation by MRI and describe confounding factors, with the intention to achieve higher accuracy and maximize reproducibility.info:eu-repo/semantics/publishedVersio
    • …
    corecore