11,568 research outputs found
Pruned Bit-Reversal Permutations: Mathematical Characterization, Fast Algorithms and Architectures
A mathematical characterization of serially-pruned permutations (SPPs)
employed in variable-length permuters and their associated fast pruning
algorithms and architectures are proposed. Permuters are used in many signal
processing systems for shuffling data and in communication systems as an
adjunct to coding for error correction. Typically only a small set of discrete
permuter lengths are supported. Serial pruning is a simple technique to alter
the length of a permutation to support a wider range of lengths, but results in
a serial processing bottleneck. In this paper, parallelizing SPPs is formulated
in terms of recursively computing sums involving integer floor and related
functions using integer operations, in a fashion analogous to evaluating
Dedekind sums. A mathematical treatment for bit-reversal permutations (BRPs) is
presented, and closed-form expressions for BRP statistics are derived. It is
shown that BRP sequences have weak correlation properties. A new statistic
called permutation inliers that characterizes the pruning gap of pruned
interleavers is proposed. Using this statistic, a recursive algorithm that
computes the minimum inliers count of a pruned BR interleaver (PBRI) in
logarithmic time complexity is presented. This algorithm enables parallelizing
a serial PBRI algorithm by any desired parallelism factor by computing the
pruning gap in lookahead rather than a serial fashion, resulting in significant
reduction in interleaving latency and memory overhead. Extensions to 2-D block
and stream interleavers, as well as applications to pruned fast Fourier
transforms and LTE turbo interleavers, are also presented. Moreover,
hardware-efficient architectures for the proposed algorithms are developed.
Simulation results demonstrate 3 to 4 orders of magnitude improvement in
interleaving time compared to existing approaches.Comment: 31 page
Fractional spin through quatum (super)Virasoro algebras
The splitting of a -deformed boson, in the Q\to q=e^{\frac{\QTR{rm}{2\pi
i}}{\QTR{rm}{k}}} limit, is discussed. The equivalence between a -fermion
and an ordinary one is established. The properties of the quantum
(super)Virasoro algebras when their deformation parameter goes to a root of
unity, are investigated. These properties are shown to be related to fractional
supersymmetry and -fermionic spin
- …