3,370 research outputs found

    Wireless Keypads - A New Classroom Technology Using Enhanced Multiple-Choice Questions

    Full text link
    This article discusses the advantages of using wireless keypads in the Lecture/classroom. This new technology requires multiple-choice (MC) questions to mate with the keypad entry features of these devices. The format of the traditional MC response is constrained to five choices and only one best response is allowed. For this reason, we propose enhancements to the traditional MC question. This enhanced MC question allows as many as ten answers. The answers can vary in their degree of correctness and can be assigned partial credit. By combining wireless keypads and multiple-choice questions, we can readily perform both formative and summative assessments of student learning. Examples and classroom applications are presented.Comment: pdf file, 8 pages,

    Teaching "Symmetry" in the Introductory Physics Curriculum

    Get PDF
    Modern physics is largely defined by fundamental symmetry principles and Noether's Theorem. Yet these are not taught, or rarely mentioned, to beginning students, thus missing an opportunity to reveal that the subject of physics is as lively and contemporary as molecular biology, and as beautiful as the arts. We prescribe a symmetry module to insert into the curriculum, of a week's length.Comment: 15 pages, 4 figure

    Safety First! : March and Two - Step

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-ps/2946/thumbnail.jp

    Magnetoelectric properties of 500 nm Cr2O3 films

    Get PDF
    The linear magnetoelectric effect was measured in 500 nm Cr2O3 films grown by rf sputtering on Al2O3 substrates between top and bottom thin film Pt electrodes. Magnetoelectric susceptibility was measured directly by applying an AC electric field and measuring the induced AC magnetic moment using superconducting quantum interference device magnetometry. A linear dependence of the induced AC magnetic moment on the AC electric field amplitude was found. The temperature dependence of the magnetoelectric susceptibility agreed qualitatively and quantitatively with prior measurements of bulk single crystals, but the characteristic temperatures of the film were lower than those of single crystals. It was also possible to reverse the sign of the magnetoelectric susceptibility by reversing the sign of the magnetic field applied during cooling through the N\'eel temperature. A competition between total magnetoelectric and Zeeman energies is proposed to explain the difference between film and bulk Cr2O3 regarding the cooling field dependence of the magnetoelectric effect.Comment: accepted at Physical Review

    Effects of hydrogen/deuterium absorption on the magnetic properties of Co/Pd multilayers

    Get PDF
    The effects of hydrogen (H2) and deuterium (D2) absorption were studied in two Co/Pd multilayers with perpendicular magnetic anisotropy (PMA) using polarized neutron reflectivity (PNR). PNR was measured in an external magnetic field H applied in the plane of the sample with the magnetization M confined in the plane for {\mu}_o H= 6.0 T and partially out of plane at 0.65 T. Nominal thicknesses of the Co and Pd layers were 2.5 {\AA} and 21 {\AA}, respectively. Because of these small values, the actual layer chemical composition, thickness, and interface roughness parameters were determined from the nuclear scattering length density profile ({\rho}_n) and its derivative obtained from both x-ray reflectivity and PNR, and uncertainties were determined using Monte Carlo analysis. The PNR {\rho}_n showed that although D2 absorption occurred throughout the samples, absorption in the multilayer stack was modest (0.02 D per Pd atom) and thus did not expand. Direct magnetometry showed that H2 absorption decreased the total M at saturation and increased the component of M in the plane of the sample when not at saturation. The PNR magnetic scattering length density ({\rho}_m) revealed that the Pd layers in the multilayer stack were magnetized and that their magnetization was preferentially modified upon D2 absorption. In one sample, a modulation of M with twice the multilayer period was observed at {\mu}_o H= 0.65 T, which increased upon D2 absorption. These results indicate that H2 or D2 absorption decreases both the PMA and total magnetization of the samples. The lack of measurable expansion during absorption indicates that these changes are primarily governed by modification of the electronic structure of the material.Comment: to appear in Physics review B, 201

    Aristotle, Abortion, and Fetal Rights

    Get PDF

    Aristotle, Abortion, and Fetal Rights

    Get PDF

    The use of artificial intelligence methods in studying quantum intramolecular vibrational dynamics

    Get PDF
    Artificial intelligence methods are used to treat the time evolution in intramolecular quantum dynamics. Comparison is made of several AI search algorithms and evaluation functions in an application to the study of quantum intramolecular vibrational redistribution. A combination of a beam search and a best-first search is used, in conjunction with an accumulated evaluation function which encourages both searching and ultimately satisfying the uncertainty principle. The methods developed are applied to an 11-coordinate heavy central mass problem and used to treat both quantum beats and "dissipative" intramolecular energy transfer. Good agreement is obtained with the "exact" quantum dynamics
    corecore