41,112 research outputs found

    Charm elliptic flow at RHIC

    Full text link
    Charm elliptic flow in heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) is studied in a multiphase transport model. Assuming that the cross section for charm quark scattering with other light quarks is the same as that between light quarks, we find that both charm and light quark elliptic flows are sensitive to the value of the cross section. Compared to that of light quarks, the elliptic flow of charm quarks is smaller at low transverse momentum but approaches comparable values at high transverse momentum. Similar features are seen in the elliptic flow of charmed mesons as well as that of the electrons from their semileptonic decays when the charmed mesons are produced from quark coalescence during hadronization of the partonic matter. To describe the large electron elliptic flow observed in available experimental data requires a charm quark scattering cross section that is much larger than that given by the perturbative QCD

    Hadronization via Coalescence

    Full text link
    We review the quark coalescence model for hadronization in relativistic heavy ion collisions and show how it can explain the observed large baryon to meson ratio at intermediate transverse momentum and scaling of the elliptic flows of identified hadrons. We also show its predictions on higher-order anisotropic flows and discuss how quark coalescence applied to open- and hidden-charm mesons can give insight to charm quark interactions in the quark-gluon plasma and J/ΚJ/\Psi production in heavy ion collisions.Comment: 6 pages, 4 figures, Proceedings of 20th Winter Workshop on Nuclear Dynamics, Trelawny Beach, Jamaica, March 15--20, 200

    Parker-Jeans Instability of Gaseous Disks Including the Effect of Cosmic Rays

    Full text link
    We use linear analysis to examine the effect of cosmic rays (CRs) on the Parker-Jeans instability of magnetized self-gravitating gaseous disks. We adopt a slab equilibrium model in which the gravity (including self-gravity) is perpendicular to the mid-plane, the magnetic field lies along the slab. CR is described as a fluid and only along magnetic field lines diffusion is considered. The linearised equations are solved numerically. The system is susceptible to Parker-Jeans instability. In general the system is less unstable when the CR diffusion coefficient is smaller (i.e., the coupling between the CRs and plasma is stronger). The system is also less unstable if CR pressure is larger. This is a reminiscence of the fact that Jeans instability and Parker instability are less unstable when the gas pressure is larger (or temperature is higher). Moreover, for large CR diffusion coefficient (or small CR pressure), perturbations parallel to the magnetic field are more unstable than those perpendicular to it. The other governing factor on the growth rate of the perturbations in different directions is the thickness of the disk or the strength of the external pressure on the disk. In fact, this is the determining factor in some parameter regimes.Comment: 19pages, 14figures submitted to Ap
    • 

    corecore