2 research outputs found

    Estimation of Design Parameters of the Crank-Connecting Rod Mechanism of Engines for Mobile Agricultural Machines

    No full text
    An accurate choice of the design model of the crank-connecting rod mechanism of piston internal combustion engines affects the accuracy of the calculation results and their complexity. At present, most of scientists and technicians choose a two-mass design model to analyze the operation of the crankconnecting rod mechanism. The model considers only the rotational and reciprocating movements of two masses, which are connected by a rigid weightless rod. This model significantly simplifies the calculations, neglects the elastic deformations of the parts of the crank-connecting rod mechanism, and eliminates the need for compiling the equations of dynamics in partial derivatives. However, the model has a number of drawbacks. The calculation results obtained using the two-mass model exhibit significant errors, which mainly depend on the design features of the connecting rod assembly. The paper discusses multi-mass design models, where the connecting rod assembly can comprise several lumped masses located along its length. In this case, the plane-parallel motion of these masses is added. The masses have weightless and absolutely rigid bonds. Forces and moments acting on the piston assembly and the crank are calculated according to the equations compiled. Comparison of the calculation results with the results obtained for a two-mass model can be used to determine errors and choose a design model that provides the required accuracy. The considered design model is of interest to engineers and technicians engaged in the design and calculation of the crank-connecting rod mechanism of piston internal combustion engines

    Current trends in the development and efficiency of irrigation systems

    No full text
    The article presents research methods for the developed irrigation systems, for increasing the efficiency of water use in the agricultural sector. Based on an analysis of literature and patent sources, the authors present ways of modifying irrigation systems, such as physical and hydraulic barriers and magnetic treatment of irrigation water. The article also presents the results of laboratory tests of the proposed drip irrigation system. It investigates five different types of drip trays to quantify hydraulic performance. Researchers obtained dependencies of uniformity of water flow through the drip trays when changing the operating pressure in the system
    corecore