106 research outputs found

    Critical illness polyneuropathy, myopathy and neuronal biomarkers in COVID-19 patients: A prospective study

    Get PDF
    OBJECTIVE: The aim was to characterize the electrophysiological features and plasma biomarkers of critical illness polyneuropathy (CIN) and myopathy (CIM) in coronavirus disease 2019 (COVID-19) patients with intensive care unit acquired weakness (ICUAW). METHODS: An observational ICU cohort study including adult patients admitted to the ICU at Uppsala University Hospital, Uppsala, Sweden, from March 13th to June 8th 2020. We compared the clinical, electrophysiological and plasma biomarker data between COVID-19 patients who developed CIN/CIM and those who did not. Electrophysiological characteristics were also compared between COVID-19 and non-COVID-19 ICU patients. RESULTS: 111 COVID-19 patients were included, 11 of whom developed CIN/CIM. Patients with CIN/CIM had more severe illness; longer ICU stay, more thromboembolic events and were more frequently treated with invasive ventilation for longer than 2 weeks. In particular CIN was more frequent among COVID-19 patients with ICUAW (50%) compared with a non-COVID-19 cohort (0%, p = 0.008). Neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAp) levels were higher in the CIN/CIM group compared with those that did not develop CIN/CIM (both p = 0.001) and correlated with nerve amplitudes. CONCLUSIONS: CIN/CIM was more prevalent among COVID-19 ICU patients with severe illness. SIGNIFICANCE: COVID-19 patients who later developed CIN/CIM had significantly higher NfL and GFAp in the early phase of ICU care, suggesting their potential as predictive biomarkers for CIN/CIM

    The extent of neuroradiological findings in COVID-19 shows correlation with blood biomarkers, Glasgow coma scale score and days in intensive care

    Get PDF
    Background and purpose: A wide range of neuroradiological findings has been reported in patients with coronavirus disease 2019 (COVID-19), ranging from subcortical white matter changes to infarcts, haemorrhages and focal contrast media enhancement. These have been descriptively but inconsistently reported and correlations with clinical findings and biomarkers have been difficult to extract from the literature. The purpose of this study was to quantify the extents of neuroradiological findings in a cohort of patients with COVID-19 and neurological symptoms, and to investigate correlations with clinical findings, duration of intensive care and biomarkers in blood. Material and methods: Patients with positive SARS-CoV-2 and at least one new-onset neurological symptom were included from April until July 2020. Nineteen patients were examined regarding clinical symptoms, biomarkers in blood and MRI of the brain. In order to quantify the MRI findings, a semi-quantitative neuroradiological severity scale was constructed a priori, and applied to the MR images by two specialists in neuroradiology. Results and conclusions: The score from the severity scale correlated significantly with blood biomarkers of CNS injury (glial fibrillary acidic protein, total-tau, ubiquitin carboxyl-terminal hydrolase L1) and inflammation (C-reactive protein), Glasgow Coma Scale score, and the number of days spent in intensive care. The underlying radiological assessments had inter-rater agreements of 90.5%/86% (for assessments with 2/3 alternatives). Total intraclass correlation was 0.80. Previously reported neuroradiological findings in COVID-19 have been diverse and heterogenous. In this study, the extent of findings in MRI examination of the brain, quantified using a structured report, shows correlation with relevant biomarkers

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types
    corecore