169 research outputs found

    A Deep Radio Survey of Abell 2125 II: Accelerated Galaxy Evolution during a Cluster-Cluster Merger

    Get PDF
    Using our extensive radio, optical, near-IR and X-ray imaging and spectroscopy, we consider the reason for the unusually large number of radio detected galaxies, mostly found outside the cluster core, in Abell 2125 (z=0.2465, richness class 4). With 20-cm VLA data, we detect continuum emission from 90 cluster members. The multiwavelength properties of these galaxies suggest that most of the radio emission is due to an enhanced star-formation rate. The dynamical study of Miller et al (2004) suggests that Abell 2125 is undergoing a major cluster-cluster merger, with our view within 30 degrees of the merger axis and within 0.2 Gyr of core passage. The combination of projection effects and the physical processes at work during this special time in the cluster's evolution seem likely to be responsible for the unusual level of activity we see in the cluster. We argue that tidal effects on individual cluster members, often far from the cluster core, are responsible for the increased star formation. Our results are consistent with the idea that disk galaxies during this phase of a cluster's evolution undergo rapid evolution, through a burst of star formation, on their way to becoming S0's.Comment: 53 pages, 12 figures, accepted AJ, paper with full resolution figures is available at http:www.aoc.nrao.edu/~fowen/papers/a2125/a2125paper2.ps.g

    A Deep Radio Survey of Abell 2125 III: The Cluster Core - Merging and Stripping

    Get PDF
    We use radio, near-IR, optical, and X-ray observations to examine dynamic processes in the central region of Abell 2125. In addition to the central triple, including members of both major dynamical subsystems identified from a redshift survey, this region features a galaxy showing strong evidence for ongoing gas stripping during a high-velocity passage through the gas in the cluster core. The disk galaxy C153 exhibits a plume stretching toward the cluster center seen in soft X-rays by Chandra, parts of which are also seen in [O II] emission and near-UV continuum light. HST imaging shows a distorted disk, with star-forming knots asymmetrically distributed and remnant spiral structure possibly defined by dust lanes. The stars and ionized gas in its disk are kinematically decoupled, demonstrating that pressure stripping must be important, and that tidal disruption is not the only mechanism at work. Comparison of the gas properties seen in the X-ray and optical data on the plume highlight significant features of the history of stripped gas in the intracluster medium. The nucleus of C153 also hosts an AGN, shown by the weak and distorted extended radio emission and a radio compact core. The unusual strength of the stripping signatures in this instance is likely related to the high relative velocity of the galaxy with respect to the intracluster medium, during a cluster/cluster merger, and its passage very near the core of the cluster. Another sign of recent dynamical events is diffuse starlight asymmetrically placed about the central triple in a cD envelope. Transient and extreme dynamical events as seen in Abell 2125 may be important drivers of galaxy evolution in the cores of rich clusters.Comment: 36 pages, 16 figures, accepted AJ, paper with full resolution figures is available at http:www.aoc.nrao.edu/~fowen/papers/a2125/a2125paper3.ps.g

    The Dynamics of Abell 2125

    Full text link
    We present 371 galaxy velocities in the field of the very rich cluster Abell 2125 (z~0.25). These were determined using optical spectroscopy collected over several years from both the WIYN 3.5m telescope and NOAO Mayall 4m telescope. Prior studies at a variety of wavelengths (radio, optical, and X-ray) have indicated that A2125 is a likely cluster-cluster merger, a scenario which we are able to test using our large velocity database. We identified 224 cluster galaxies, which were subjected to a broad range of statistical tests using both positional and velocity information to evaluate the cluster dynamics and substructure. The tests confirmed the presence of substructures within the Abell 2125 system at high significance, demonstrating that A2125 is a complex dynamical system. Comparison of the test results with existing simulations strengthens the merger hypothesis, and provides clues about the merger geometry and stage. The merger model for the system can reconcile A2125's low X-ray temperature and luminosity with its apparently high richness, and might also explain A2125's high fraction of active galaxies identified in prior radio and optical studies.Comment: 34 pages, including tables and 3 color figures; to appear in Ap
    • …
    corecore