12,809 research outputs found
Attractive Fermi gases with unequal spin populations in highly elongated traps
We investigate two-component attractive Fermi gases with imbalanced spin
populations in trapped one dimensional configurations. The ground state
properties are determined within local density approximation, starting from the
exact Bethe-ansatz equations for the homogeneous case. We predict that the
atoms are distributed according to a two-shell structure: a partially polarized
phase in the center of the trap and either a fully paired or a fully polarized
phase in the wings. The partially polarized core is expected to be a superfluid
of the FFLO type. The size of the cloud as well as the critical spin
polarization needed to suppress the fully paired shell, are calculated as a
function of the coupling strength.Comment: Final accepted versio
Theory of the striped superconductor
We define a distinct phase of matter, a "pair density wave" (PDW), in which
the superconducting order parameter varies periodically as a function of
position such that when averaged over the center of mass position, all
components of vanish identically. Specifically, we study the simplest,
unidirectional PDW, the "striped superconductor," which we argue may be at the
heart of a number of spectacular experimental anomalies that have been observed
in the failed high temperature superconductor, La BaCuO. We
present a solvable microscopic model with strong electron-electron interactions
which supports a PDW groundstate. We also discuss, at the level of Landau
theory, the nature of the coupling between the PDW and other order parameters,
and the origins and some consequences of the unusual sensitivity of this state
to quenched disorder.Comment: 16 pages, 3 figures, 1 table; Journal ref. adde
How many phases meet at the chiral critical point?
We explore the phase diagram of NJL-type models near the chiral critical
point allowing for phases with spatially inhomogeneous chiral condensates. In
the chiral limit it turns out that the region in the mean-field phase diagram
where those phases are energetically preferred very generically reaches out to
the chiral critical point. The preferred inhomogeneous ground state in this
vicinity possibly resembles a lattice of domain wall solitons. This raises the
question of their relevance for the phase diagram of QCD.Comment: 7 pages, 1 figure; v2: minor corrections, as published in PR
Faint Field Galaxies Around Bright Stars - A New Strategy for Imaging at the Diffraction Limit
This paper presents a new strategy for observing faint galaxies with high
order natural guide star systems. We have imaged 5 high galactic latitude
fields within the isoplanatic patch of bright stars (8.5 < R < 10.3 mag). The
fields provide a rich set of faint field galaxies that are observable with a
natural guide star adaptive optics system on a large telescope. Due to the
small fields of many AO science cameras, these preliminary images are necessary
to identify candidate galaxies. We present the photometry and positions for 78
objects (at least 40 galaxies) near five bright stars, appropriate for
diffraction limited studies with the Keck and other AO systems on large
ground-based telescopes. The K band seeing conditions in each field were
excellent (0.4" - 0.7") allowing us to identify stars and estimate galaxy
sizes. We also simulate AO images of field galaxies to determine the
feasibility of infrared morphological studies at the diffraction limit. With
new high order AO systems coming on line with 8-10 meter class telescopes, we
believe these observations are invaluable in beginning to study faint galaxy
populations at the diffraction limit.Comment: 15 pages, Latex, 9 figures. Accepted for publication in P.A.S.
The genomes and history of domestic animals
This paper reviews how mammalian genomes are utilized in modern genetics for the detection of genes and polymorphisms (mutations) within domesticated animal (mostly livestock) genomes that are related to traits of economic importance to humans. Examples are given of how genetic analysis allows to determine key genes associated with the quality and quantity of milk in cattle and key genes for meat production. Various questions are reviewed, such as how contemporary methods of genome sequencing allow to maximise the effective detection of coding and regulatory DNA polymorphisms within the genomes of major domesticated mammals (cattle, sheep and pigs) and the history of their formation from the standpoint of genetics
Suppression or enhancement of the Fulde-Ferrell-Larkin-Ovchinnikov order in a one-dimensional optical lattice with particle correlated tunnelling
We study through controlled numerical simulation the ground state properties
of spin-polarized strongly interacting fermi gas in an anisotropic optical
lattice, which is described by an effective one-dimensional general Hubbard
model with particle correlated hopping rate. We show that the
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) type of state, while enhanced by a
negative correlated hopping rate, can be completely suppressed by positive
particle correlated hopping, yielding to an unusual magnetic phase even for
particles with on-site attractive interaction We also find several different
phase separation patterns for these atoms in an inhomogeneous harmonic trap,
depending on the correlated hopping rate
Pairing states of a polarized Fermi gas trapped in a one-dimensional optical lattice
We study the properties of a one-dimensional (1D) gas of fermions trapped in
a lattice by means of the density matrix renormalization group method, focusing
on the case of unequal spin populations, and strong attractive interaction. In
the low density regime, the system phase-separates into a well defined
superconducting core and a fully polarized metallic cloud surrounding it. We
argue that the superconducting phase corresponds to a 1D analogue of the
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state, with a quasi-condensate of
tightly bound bosonic pairs with a finite center-of-mass momentum that scales
linearly with the magnetization. In the large density limit, the system allows
for four phases: in the core, we either find a Fock state of localized pairs or
a metallic shell with free spin-down fermions moving in a fully filled
background of spin-up fermions. As the magnetization increases, the Fock state
disappears to give room for a metallic phase, with a partially polarized
superconducting FFLO shell and a fully polarized metallic cloud surrounding the
core.Comment: 4 pages, 5 fig
Bose-Einstein Condensates in Strongly Disordered Traps
A Bose-Einstein condensate in an external potential consisting of a
superposition of a harmonic and a random potential is considered theoretically.
From a semi-quantitative analysis we find the size, shape and excitation
energy as a function of the disorder strength. For positive scattering length
and sufficiently strong disorder the condensate decays into fragments each of
the size of the Larkin length . This state is stable over a large
range of particle numbers. The frequency of the breathing mode scales as
. For negative scattering length a condensate of size
may exist as a metastable state. These finding are generalized to anisotropic
traps
Recovering of superconductivity in exchange fields exceeding Pauli limiting field under spin-dependent quasiparticle distribution
We study theoretically the simultaneous influence of spin accumulation
potential and the Zeeman exchange field on singlet
superconductivity. It is shown that the pair-breaking effect of the Zeeman
field can be fully compensated by creation of the appropriate spin accumulation
potential in the superconductor. Moreover, superconductivity can be recovered
for exchange fields well exceeding the Pauli limiting field. It is proposed
that the effect can be experimentally realized on the basis of voltage biased
junction consisting of a thin superconducting film sandwiched between two half
metals.Comment: 4 pages, 1 figure, published versio
- …