12,809 research outputs found

    Attractive Fermi gases with unequal spin populations in highly elongated traps

    Full text link
    We investigate two-component attractive Fermi gases with imbalanced spin populations in trapped one dimensional configurations. The ground state properties are determined within local density approximation, starting from the exact Bethe-ansatz equations for the homogeneous case. We predict that the atoms are distributed according to a two-shell structure: a partially polarized phase in the center of the trap and either a fully paired or a fully polarized phase in the wings. The partially polarized core is expected to be a superfluid of the FFLO type. The size of the cloud as well as the critical spin polarization needed to suppress the fully paired shell, are calculated as a function of the coupling strength.Comment: Final accepted versio

    Theory of the striped superconductor

    Full text link
    We define a distinct phase of matter, a "pair density wave" (PDW), in which the superconducting order parameter ϕ\phi varies periodically as a function of position such that when averaged over the center of mass position, all components of ϕ\phi vanish identically. Specifically, we study the simplest, unidirectional PDW, the "striped superconductor," which we argue may be at the heart of a number of spectacular experimental anomalies that have been observed in the failed high temperature superconductor, La2−x_{2-x} Bax_xCuO4_4. We present a solvable microscopic model with strong electron-electron interactions which supports a PDW groundstate. We also discuss, at the level of Landau theory, the nature of the coupling between the PDW and other order parameters, and the origins and some consequences of the unusual sensitivity of this state to quenched disorder.Comment: 16 pages, 3 figures, 1 table; Journal ref. adde

    How many phases meet at the chiral critical point?

    Full text link
    We explore the phase diagram of NJL-type models near the chiral critical point allowing for phases with spatially inhomogeneous chiral condensates. In the chiral limit it turns out that the region in the mean-field phase diagram where those phases are energetically preferred very generically reaches out to the chiral critical point. The preferred inhomogeneous ground state in this vicinity possibly resembles a lattice of domain wall solitons. This raises the question of their relevance for the phase diagram of QCD.Comment: 7 pages, 1 figure; v2: minor corrections, as published in PR

    Faint Field Galaxies Around Bright Stars - A New Strategy for Imaging at the Diffraction Limit

    Get PDF
    This paper presents a new strategy for observing faint galaxies with high order natural guide star systems. We have imaged 5 high galactic latitude fields within the isoplanatic patch of bright stars (8.5 < R < 10.3 mag). The fields provide a rich set of faint field galaxies that are observable with a natural guide star adaptive optics system on a large telescope. Due to the small fields of many AO science cameras, these preliminary images are necessary to identify candidate galaxies. We present the photometry and positions for 78 objects (at least 40 galaxies) near five bright stars, appropriate for diffraction limited studies with the Keck and other AO systems on large ground-based telescopes. The K band seeing conditions in each field were excellent (0.4" - 0.7") allowing us to identify stars and estimate galaxy sizes. We also simulate AO images of field galaxies to determine the feasibility of infrared morphological studies at the diffraction limit. With new high order AO systems coming on line with 8-10 meter class telescopes, we believe these observations are invaluable in beginning to study faint galaxy populations at the diffraction limit.Comment: 15 pages, Latex, 9 figures. Accepted for publication in P.A.S.

    The genomes and history of domestic animals

    Get PDF
    This paper reviews how mammalian genomes are utilized in modern genetics for the detection of genes and polymorphisms (mutations) within domesticated animal (mostly livestock) genomes that are related to traits of economic importance to humans. Examples are given of how genetic analysis allows to determine key genes associated with the quality and quantity of milk in cattle and key genes for meat production. Various questions are reviewed, such as how contemporary methods of genome sequencing allow to maximise the effective detection of coding and regulatory DNA polymorphisms within the genomes of major domesticated mammals (cattle, sheep and pigs) and the history of their formation from the standpoint of genetics

    Suppression or enhancement of the Fulde-Ferrell-Larkin-Ovchinnikov order in a one-dimensional optical lattice with particle correlated tunnelling

    Full text link
    We study through controlled numerical simulation the ground state properties of spin-polarized strongly interacting fermi gas in an anisotropic optical lattice, which is described by an effective one-dimensional general Hubbard model with particle correlated hopping rate. We show that the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) type of state, while enhanced by a negative correlated hopping rate, can be completely suppressed by positive particle correlated hopping, yielding to an unusual magnetic phase even for particles with on-site attractive interaction We also find several different phase separation patterns for these atoms in an inhomogeneous harmonic trap, depending on the correlated hopping rate

    Pairing states of a polarized Fermi gas trapped in a one-dimensional optical lattice

    Full text link
    We study the properties of a one-dimensional (1D) gas of fermions trapped in a lattice by means of the density matrix renormalization group method, focusing on the case of unequal spin populations, and strong attractive interaction. In the low density regime, the system phase-separates into a well defined superconducting core and a fully polarized metallic cloud surrounding it. We argue that the superconducting phase corresponds to a 1D analogue of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state, with a quasi-condensate of tightly bound bosonic pairs with a finite center-of-mass momentum that scales linearly with the magnetization. In the large density limit, the system allows for four phases: in the core, we either find a Fock state of localized pairs or a metallic shell with free spin-down fermions moving in a fully filled background of spin-up fermions. As the magnetization increases, the Fock state disappears to give room for a metallic phase, with a partially polarized superconducting FFLO shell and a fully polarized metallic cloud surrounding the core.Comment: 4 pages, 5 fig

    Bose-Einstein Condensates in Strongly Disordered Traps

    Get PDF
    A Bose-Einstein condensate in an external potential consisting of a superposition of a harmonic and a random potential is considered theoretically. From a semi-quantitative analysis we find the size, shape and excitation energy as a function of the disorder strength. For positive scattering length and sufficiently strong disorder the condensate decays into fragments each of the size of the Larkin length L{\cal L}. This state is stable over a large range of particle numbers. The frequency of the breathing mode scales as 1/L21/{\cal L}^2. For negative scattering length a condensate of size L{\cal L} may exist as a metastable state. These finding are generalized to anisotropic traps

    Recovering of superconductivity in exchange fields exceeding Pauli limiting field under spin-dependent quasiparticle distribution

    Full text link
    We study theoretically the simultaneous influence of spin accumulation potential eV↑−eV↓eV_\uparrow-eV_\downarrow and the Zeeman exchange field on singlet superconductivity. It is shown that the pair-breaking effect of the Zeeman field can be fully compensated by creation of the appropriate spin accumulation potential in the superconductor. Moreover, superconductivity can be recovered for exchange fields well exceeding the Pauli limiting field. It is proposed that the effect can be experimentally realized on the basis of voltage biased junction consisting of a thin superconducting film sandwiched between two half metals.Comment: 4 pages, 1 figure, published versio
    • …
    corecore